Combining Philosophers

All the ideas for Oliver,A/Smiley,T, Carl Ginet and Alan Musgrave

unexpand these ideas     |    start again     |     specify just one area for these philosophers


20 ideas

4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is usually derived from Separation, but it also seems to need Infinity [Oliver/Smiley]
     Full Idea: The empty set is usually derived via Zermelo's axiom of separation. But the axiom of separation is conditional: it requires the existence of a set in order to generate others as subsets of it. The original set has to come from the axiom of infinity.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: They charge that this leads to circularity, as Infinity depends on the empty set.
The empty set is something, not nothing! [Oliver/Smiley]
     Full Idea: Some authors need to be told loud and clear: if there is an empty set, it is something, not nothing.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: I'm inclined to think of a null set as a pair of brackets, so maybe that puts it into a metalanguage.
We don't need the empty set to express non-existence, as there are other ways to do that [Oliver/Smiley]
     Full Idea: The empty set is said to be useful to express non-existence, but saying 'there are no Us', or ¬∃xUx are no less concise, and certainly less roundabout.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
Maybe we can treat the empty set symbol as just meaning an empty term [Oliver/Smiley]
     Full Idea: Suppose we introduce Ω not as a term standing for a supposed empty set, but as a paradigm of an empty term, not standing for anything.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: This proposal, which they go on to explore, seems to mean that Ω (i.e. the traditional empty set symbol) is no longer part of set theory but is part of semantics.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The unit set may be needed to express intersections that leave a single member [Oliver/Smiley]
     Full Idea: Thomason says with no unit sets we couldn't call {1,2}∩{2,3} a set - but so what? Why shouldn't the intersection be the number 2? However, we then have to distinguish three different cases of intersection (common subset or member, or disjoint).
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 2.2)
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
The If-thenist view only seems to work for the axiomatised portions of mathematics [Musgrave]
     Full Idea: The If-thenist view seems to apply straightforwardly only to the axiomatised portions of mathematics.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: He cites Lakatos to show that cutting-edge mathematics is never axiomatised. One might reply that if the new mathematics is any good then it ought to be axiomatis-able (barring Gödelian problems).
Perhaps If-thenism survives in mathematics if we stick to first-order logic [Musgrave]
     Full Idea: If we identify logic with first-order logic, and mathematics with the collection of first-order theories, then maybe we can continue to maintain the If-thenist position.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: The problem is that If-thenism must rely on rules of inference. That seems to mean that what is needed is Soundness, rather than Completeness. That is, inference by the rules must work properly.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
If you only refer to objects one at a time, you need sets in order to refer to a plurality [Oliver/Smiley]
     Full Idea: A 'singularist', who refers to objects one at a time, must resort to the language of sets in order to replace plural reference to members ('Henry VIII's wives') by singular reference to a set ('the set of Henry VIII's wives').
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: A simple and illuminating point about the motivation for plural reference. Null sets and singletons give me the creeps, so I would personally prefer to avoid set theory when dealing with ontology.
We can use plural language to refer to the set theory domain, to avoid calling it a 'set' [Oliver/Smiley]
     Full Idea: Plurals earn their keep in set theory, to answer Skolem's remark that 'in order to treat of 'sets', we must begin with 'domains' that are constituted in a certain way'. We can speak in the plural of 'the objects', not a 'domain' of objects.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: [Skolem 1922:291 in van Heijenoort] Zermelo has said that the domain cannot be a set, because every set belongs to it.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths may contain non-logical notions, as in 'all men are men' [Musgrave]
     Full Idea: Containing only logical notions is not a necessary condition for being a logical truth, since a logical truth such as 'all men are men' may contain non-logical notions such as 'men'.
     From: Alan Musgrave (Logicism Revisited [1977], §3)
     A reaction: [He attributes this point to Russell] Maybe it is only a logical truth in its general form, as ∀x(x=x). Of course not all 'banks' are banks.
A statement is logically true if it comes out true in all interpretations in all (non-empty) domains [Musgrave]
     Full Idea: The standard modern view of logical truth is that a statement is logically true if it comes out true in all interpretations in all (non-empty) domains.
     From: Alan Musgrave (Logicism Revisited [1977], §3)
Logical truths are true no matter what exists - but predicate calculus insists that something exists [Oliver/Smiley]
     Full Idea: Logical truths should be true no matter what exists, so true even if nothing exists. The classical predicate calculus, however, makes it logically true that something exists.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
If mathematics purely concerned mathematical objects, there would be no applied mathematics [Oliver/Smiley]
     Full Idea: If mathematics was purely concerned with mathematical objects, there would be no room for applied mathematics.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
     A reaction: Love it! Of course, they are using 'objects' in the rather Fregean sense of genuine abstract entities. I don't see why fictionalism shouldn't allow maths to be wholly 'pure', although we have invented fictions which actually have application.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
No two numbers having the same successor relies on the Axiom of Infinity [Musgrave]
     Full Idea: The axiom of Peano which states that no two numbers have the same successor requires the Axiom of Infinity for its proof.
     From: Alan Musgrave (Logicism Revisited [1977], §4 n)
     A reaction: [He refers to Russell 1919:131-2] The Axiom of Infinity is controversial and non-logical.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Sets might either represent the numbers, or be the numbers, or replace the numbers [Oliver/Smiley]
     Full Idea: Identifying numbers with sets may mean one of three quite different things: 1) the sets represent the numbers, or ii) they are the numbers, or iii) they replace the numbers.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.2)
     A reaction: Option one sounds the most plausible to me. I will take numbers to be patterns embedded in nature, and sets are one way of presenting them in shorthand form, in order to bring out what is repeated.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism seems to exclude all creative, growing mathematics [Musgrave]
     Full Idea: Formalism seems to exclude from consideration all creative, growing mathematics.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: [He cites Lakatos in support] I am not immediately clear why spotting the remote implications of a formal system should be uncreative. The greatest chess players are considered to be highly creative and imaginative.
Formalism is a bulwark of logical positivism [Musgrave]
     Full Idea: Formalism is a bulwark of logical positivist philosophy.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: Presumably if you drain all the empirical content out of arithmetic and geometry, you are only left with the bare formal syntax, of symbols and rules. That seems to be as analytic as you can get.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
Must all justification be inferential? [Ginet]
     Full Idea: The infinitist view of justification holds that every justification must be inferential: no other kind of justification is possible.
     From: Carl Ginet (Infinitism not solution to regress problem [2005], p.141)
     A reaction: This is the key question in discussing whether justification is foundational. I'm not sure whether 'inference' is the best word when something is evidence for something else. I am inclined to think that only propositions can be reasons.
Inference cannot originate justification, it can only transfer it from premises to conclusion [Ginet]
     Full Idea: Inference cannot originate justification, it can only transfer it from premises to conclusion. And so it cannot be that, if there actually occurs justification, it is all inferential.
     From: Carl Ginet (Infinitism not solution to regress problem [2005], p.148)
     A reaction: The idea that justification must have an 'origin' seems to beg the question. I take Klein's inifinitism to be a version of coherence, where the accumulation of good reasons adds up to justification. It is not purely inferential.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
Logical positivists adopted an If-thenist version of logicism about numbers [Musgrave]
     Full Idea: Logical positivists did not adopt old-style logicism, but rather logicism spiced with varying doses of If-thenism.
     From: Alan Musgrave (Logicism Revisited [1977], §4)
     A reaction: This refers to their account of mathematics as a set of purely logical truths, rather than being either empirical, or a priori synthetic.