Combining Philosophers

All the ideas for Paul Bernays, William K. Clifford and Thoralf Skolem

unexpand these ideas     |    start again     |     specify just one area for these philosophers


9 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Axiomatising set theory makes it all relative [Skolem]
     Full Idea: Axiomatising set theory leads to a relativity of set-theoretic notions, and this relativity is inseparably bound up with every thoroughgoing axiomatisation.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.296)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Skolem did not believe in the existence of uncountable sets [Skolem]
     Full Idea: Skolem did not believe in the existence of uncountable sets.
     From: Thoralf Skolem (works [1920], 5.3)
     A reaction: Kit Fine refers somewhere to 'unrepentent Skolemites' who still hold this view.
Very few things in set theory remain valid in intuitionist mathematics [Bernays]
     Full Idea: Very few things in set theory remain valid in intuitionist mathematics.
     From: Paul Bernays (On Platonism in Mathematics [1934])
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If a 1st-order proposition is satisfied, it is satisfied in a denumerably infinite domain [Skolem]
     Full Idea: Löwenheim's theorem reads as follows: If a first-order proposition is satisfied in any domain at all, it is already satisfied in a denumerably infinite domain.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.293)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Integers and induction are clear as foundations, but set-theory axioms certainly aren't [Skolem]
     Full Idea: The initial foundations should be immediately clear, natural and not open to question. This is satisfied by the notion of integer and by inductive inference, by it is not satisfied by the axioms of Zermelo, or anything else of that kind.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.299)
     A reaction: This is a plea (endorsed by Almog) that the integers themselves should be taken as primitive and foundational. I would say that the idea of successor is more primitive than the integers.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Restricted Platonism is just an ideal projection of a domain of thought [Bernays]
     Full Idea: A restricted Platonism does not claim to be more than, so to speak, an ideal projection of a domain of thought.
     From: Paul Bernays (On Platonism in Mathematics [1934], p.261)
     A reaction: I have always found Platonism to be congenial when it talks of 'ideals', and ridiculous when it talks of a special form of 'existence'. Ideals only 'exist' because we idealise things. I may declare myself, after all, to be a Restricted Platonist.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Mathematician want performable operations, not propositions about objects [Skolem]
     Full Idea: Most mathematicians want mathematics to deal, ultimately, with performable computing operations, and not to consist of formal propositions about objects called this or that.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.300)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematical abstraction just goes in a different direction from logic [Bernays]
     Full Idea: Mathematical abstraction does not have a lesser degree than logical abstraction, but rather another direction.
     From: Paul Bernays (On Platonism in Mathematics [1934], p.268)
     A reaction: His point is that the logicists seem to think that if you increasingly abstract from mathematics, you end up with pure logic.
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / b. Evidentialism
It is always wrong to believe things on insufficient evidence [Clifford]
     Full Idea: It is wrong always, everywhere, and for anyone, to believe anything upon insufficient evidence.
     From: William K. Clifford (works [1870]), quoted by Robert Fogelin - Walking the Tightrope of Reason Ch.4
     A reaction: This is a famous remark, but is in danger of being tautological unless one gives some account of what 'insufficient' means. If Clifford means the evidence must be conclusive, this is nonsense. 'Never believe if there is no evidence' is better.