Combining Philosophers

All the ideas for Peter B. Lewis, David Hilbert and Michael Devitt

unexpand these ideas     |    start again     |     specify just one area for these philosophers


46 ideas

3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
If axioms and their implications have no contradictions, they pass my criterion of truth and existence [Hilbert]
     Full Idea: If the arbitrarily given axioms do not contradict each other with all their consequences, then they are true and the things defined by the axioms exist. For me this is the criterion of truth and existence.
     From: David Hilbert (Letter to Frege 29.12.1899 [1899]), quoted by R Kaplan / E Kaplan - The Art of the Infinite 2 'Mind'
     A reaction: If an axiom says something equivalent to 'fairies exist, but they are totally undetectable', this would seem to avoid contradiction with anything, and hence be true. Hilbert's idea sounds crazy to me. He developed full Formalism later.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
You would cripple mathematics if you denied Excluded Middle [Hilbert]
     Full Idea: Taking the principle of Excluded Middle away from the mathematician would be the same, say, as prohibiting the astronomer from using the telescope or the boxer from using his fists.
     From: David Hilbert (The Foundations of Mathematics [1927], p.476), quoted by Ian Rumfitt - The Boundary Stones of Thought 9.4
     A reaction: [p.476 in Van Heijenoort]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The facts of geometry, arithmetic or statics order themselves into theories [Hilbert]
     Full Idea: The facts of geometry order themselves into a geometry, the facts of arithmetic into a theory of numbers, the facts of statics, electrodynamics into a theory of statics, electrodynamics, or the facts of the physics of gases into a theory of gases.
     From: David Hilbert (Axiomatic Thought [1918], [03])
     A reaction: This is the confident (I would say 'essentialist') view of axioms, which received a bit of a setback with Gödel's Theorems. I certainly agree that the world proposes an order to us - we don't just randomly invent one that suits us.
Axioms must reveal their dependence (or not), and must be consistent [Hilbert]
     Full Idea: If a theory is to serve its purpose of orienting and ordering, it must first give us an overview of the independence and dependence of its propositions, and second give a guarantee of the consistency of all of the propositions.
     From: David Hilbert (Axiomatic Thought [1918], [09])
     A reaction: Gödel's Second theorem showed that the theory can never prove its own consistency, which made the second Hilbert requirement more difficult. It is generally assumed that each of the axioms must be independent of the others.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
I aim to establish certainty for mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is the clearest statement of the famous Hilbert Programme, which is said to have been brought to an abrupt end by Gödel's Incompleteness Theorems.
We believe all mathematical problems are solvable [Hilbert]
     Full Idea: The thesis that every mathematical problem is solvable - we are all convinced that it really is so.
     From: David Hilbert (On the Infinite [1925], p.200)
     A reaction: This will include, for example, Goldbach's Conjecture (every even is the sum of two primes), which is utterly simple but with no proof anywhere in sight.
Hilbert wanted to prove the consistency of all of mathematics (which realists take for granted) [Hilbert, by Friend]
     Full Idea: Hilbert wanted to derive ideal mathematics from the secure, paradox-free, finite mathematics (known as 'Hilbert's Programme'). ...Note that for the realist consistency is not something we need to prove; it is a precondition of thought.
     From: report of David Hilbert (works [1900], 6.7) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: I am an intuitive realist, though I am not so sure about that on cautious reflection. Compare the claims that there are reasons or causes for everything. Reality cannot contain contradicitions (can it?). Contradictions would be our fault.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Hilbert aimed to eliminate number from geometry [Hilbert, by Hart,WD]
     Full Idea: One of Hilbert's aims in 'The Foundations of Geometry' was to eliminate number [as measure of lengths and angles] from geometry.
     From: report of David Hilbert (Foundations of Geometry [1899]) by William D. Hart - The Evolution of Logic 2
     A reaction: Presumably this would particularly have to include the elimination of ratios (rather than actual specific lengths).
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Only the finite can bring certainty to the infinite [Hilbert]
     Full Idea: Operating with the infinite can be made certain only by the finitary.
     From: David Hilbert (On the Infinite [1925], p.201)
     A reaction: See 'Compactness' for one aspect of this claim. I think Hilbert was fighting a rearguard action, and his idea now has few followers.
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
     Full Idea: No one shall drive us out of the paradise the Cantor has created for us.
     From: David Hilbert (On the Infinite [1925], p.191), quoted by James Robert Brown - Philosophy of Mathematics
     A reaction: This is Hilbert's famous refusal to accept any account of mathematics, such as Kant's, which excludes actual infinities. Cantor had laid out a whole glorious hierarchy of different infinities.
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
     Full Idea: To preserve the simple formal rules of ordinary Aristotelian logic, we must supplement the finitary statements with ideal statements.
     From: David Hilbert (On the Infinite [1925], p.195)
     A reaction: I find very appealing the picture of mathematics as rooted in the physical world, and then gradually extended by a series of 'idealisations', which should perhaps be thought of as fictions.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
     Full Idea: Just as in the limit processes of the infinitesimal calculus, the infinitely large and small proved to be a mere figure of speech, so too we must realise that the infinite in the sense of an infinite totality, used in deductive methods, is an illusion.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is a very authoritative rearguard action. I no longer think the dispute matters much, it being just a dispute over a proposed new meaning for the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
     Full Idea: A homogeneous continuum which admits of the sort of divisibility needed to realise the infinitely small is nowhere to be found in reality.
     From: David Hilbert (On the Infinite [1925], p.186)
     A reaction: He makes this remark as a response to Planck's new quantum theory (the year before the big works of Heisenberg and Schrödinger). Personally I don't see why infinities should depend on the physical world, since they are imaginary.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
To decide some questions, we must study the essence of mathematical proof itself [Hilbert]
     Full Idea: It is necessary to study the essence of mathematical proof itself if one wishes to answer such questions as the one about decidability in a finite number of operations.
     From: David Hilbert (Axiomatic Thought [1918], [53])
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid axioms concerns possibilities of construction, but Hilbert's assert the existence of objects [Hilbert, by Chihara]
     Full Idea: Hilbert's geometrical axioms were existential in character, asserting the existence of certain geometrical objects (points and lines). Euclid's postulates do not assert the existence of anything; they assert the possibility of certain constructions.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Charles Chihara - A Structural Account of Mathematics 01.1
     A reaction: Chihara says geometry was originally understood modally, but came to be understood existentially. It seems extraordinary to me that philosophers of mathematics can have become more platonist over the centuries.
Hilbert's formalisation revealed implicit congruence axioms in Euclid [Hilbert, by Horsten/Pettigrew]
     Full Idea: In his formal investigation of Euclidean geometry, Hilbert uncovered congruence axioms that implicitly played a role in Euclid's proofs but were not explicitly recognised.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Horsten,L/Pettigrew,R - Mathematical Methods in Philosophy 2
     A reaction: The writers are offering this as a good example of the benefits of a precise and formal approach to foundational questions. It's hard to disagree, but dispiriting if you need a PhD in maths before you can start doing philosophy.
Hilbert's geometry is interesting because it captures Euclid without using real numbers [Hilbert, by Field,H]
     Full Idea: Hilbert's formulation of the Euclidean theory is of special interest because (besides being rigorously axiomatised) it does not employ the real numbers in the axioms.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Hartry Field - Science without Numbers 3
     A reaction: Notice that this job was done by Hilbert, and not by the fictionalist Hartry Field.
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
     Full Idea: The linearity of the equation of the plane and of the orthogonal transformation of point-coordinates is completely adequate to produce the whole broad science of spatial Euclidean geometry purely by means of analysis.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This remark comes from the man who succeeded in producing modern axioms for geometry (in 1897), so he knows what he is talking about. We should not be wholly pessimistic about Hilbert's ambitious projects. He had to dig deeper than this idea...
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Number theory just needs calculation laws and rules for integers [Hilbert]
     Full Idea: The laws of calculation and the rules of integers suffice for the construction of number theory.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This is the confident Hilbert view that the whole system can be fully spelled out. Gödel made this optimism more difficult.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The existence of an arbitrarily large number refutes the idea that numbers come from experience [Hilbert]
     Full Idea: The standpoint of pure experience seems to me to be refuted by the objection that the existence, possible or actual, of an arbitrarily large number can never be derived through experience, that is, through experiment.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.130)
     A reaction: Alternatively, empiricism refutes infinite numbers! No modern mathematician will accept that, but you wonder in what sense the proposed entities qualify as 'numbers'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic already contains some arithmetic, so the two must be developed together [Hilbert]
     Full Idea: In the traditional exposition of the laws of logic certain fundamental arithmetic notions are already used, for example in the notion of set, and to some extent also of number. Thus we turn in a circle, and a partly simultaneous development is required.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.131)
     A reaction: If the Axiom of Infinity is meant, it may be possible to purge the arithmetic from the logic. Then the challenge to derive arithmetic from it becomes rather tougher.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The grounding of mathematics is 'in the beginning was the sign' [Hilbert]
     Full Idea: The solid philosophical attitude that I think is required for the grounding of pure mathematics is this: In the beginning was the sign.
     From: David Hilbert (works [1900]), quoted by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Why did people invent those particular signs? Presumably they were meant to designate something, in the world or in our experience.
Hilbert substituted a syntactic for a semantic account of consistency [Hilbert, by George/Velleman]
     Full Idea: Hilbert replaced a semantic construal of inconsistency (that the theory entails a statement that is necessarily false) by a syntactic one (that the theory formally derives the statement (0 =1 ∧ 0 not-= 1).
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Finding one particular clash will pinpoint the notion of inconsistency, but it doesn't seem to define what it means, since the concept has very wide application.
Hilbert said (to block paradoxes) that mathematical existence is entailed by consistency [Hilbert, by Potter]
     Full Idea: Hilbert proposed to circuvent the paradoxes by means of the doctrine (already proposed by Poincaré) that in mathematics consistency entails existence.
     From: report of David Hilbert (On the Concept of Number [1900], p.183) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 19 'Exist'
     A reaction: Interesting. Hilbert's idea has struck me as weird, but it makes sense if its main motive is to block the paradoxes. Roughly, the idea is 'it exists if it isn't paradoxical'. A low bar for existence (but then it is only in mathematics!).
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Hilbert aimed to prove the consistency of mathematics finitely, to show infinities won't produce contradictions [Hilbert, by George/Velleman]
     Full Idea: Hilbert's project was to establish the consistency of classical mathematics using just finitary means, to convince all parties that no contradictions will follow from employing the infinitary notions and reasoning.
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This is the project which was badly torpedoed by Gödel's Second Incompleteness Theorem.
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
     Full Idea: We can conceive mathematics to be a stock of two kinds of formulas: first, those to which the meaningful communications of finitary statements correspond; and secondly, other formulas which signify nothing and which are ideal structures of our theory.
     From: David Hilbert (On the Infinite [1925], p.196), quoted by David Bostock - Philosophy of Mathematics 6.1
8. Modes of Existence / D. Universals / 1. Universals
Realism doesn't explain 'a is F' any further by saying it is 'a has F-ness' [Devitt]
     Full Idea: Realists feel that the one-place predication 'a is F' leaves something unexplained, yet all that is offered is a two-place predication (a relational statement). There is an equal problem about 'a having F-ness'.
     From: Michael Devitt ('Ostrich Nominalism' or 'Mirage Realism'? [1980], p.97)
     A reaction: I think this is a key argument on the nominalist side - the denial that the theory of universals actually makes any progress at all in giving an explanation of what is going on around here. Platonist have the problem of 'partaking'.
8. Modes of Existence / E. Nominalism / 1. Nominalism / b. Nominalism about universals
The particular/universal distinction is unhelpful clutter; we should accept 'a is F' as basic [Devitt]
     Full Idea: Talk of 'particulars' and 'universals' clutters the landscape without adding to our understanding. We should rest with the basic fact that a is F.
     From: Michael Devitt ('Ostrich Nominalism' or 'Mirage Realism'? [1980], p.98)
     A reaction: Ramsey was first to challenge the basic distinction. I find the approach of Quine and Devitt unsatisfactory. We abandon explanation when it is totally hopeless, but that is usually in the face of complexity. Properties are difficult but simple.
8. Modes of Existence / E. Nominalism / 1. Nominalism / c. Nominalism about abstracta
Quineans take predication about objects as basic, not reference to properties they may have [Devitt]
     Full Idea: For 'a and b have the same property, F-ness' the Quinean Nominalist has a paraphrase to hand: 'a and b are both F'. ..In denying that this object need have properties, the Quinean is not denying that it really is F.
     From: Michael Devitt ('Ostrich Nominalism' or 'Mirage Realism'? [1980], p.95)
     A reaction: The question that remains is why 'F' is used of both a and b. We don't call a and b 'a', because they are different. Quine falls back on resemblance. I suspect Quineans of hiding behind the semantics.
9. Objects / D. Essence of Objects / 10. Essence as Species
Essentialism concerns the nature of a group, not its category [Devitt]
     Full Idea: Essentialism is concerned with the nature of a group, whatever the category it falls under.
     From: Michael Devitt (Resurrecting Biological Essentialism [2008], 6)
     A reaction: This seems to me such a simple and obvious point that I am amazed that anyone rejects it, yet lots of people seem to think that an essence is just some sort of category.
Things that gradually change, like species, can still have essences [Devitt]
     Full Idea: An intrinsic essence does not have to be 'neat and tidy'. ...Essentialism can accept the gradual change of one thing into another.
     From: Michael Devitt (Resurrecting Biological Essentialism [2008], 11)
     A reaction: My thesis is that essentialism is a response to the needs of explanation, so as long as there is some core explanation to be found, even in something transitory, then the concept of an essence can apply to it.
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184), quoted by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: This dream is famous for being shattered by Gödel's Incompleteness Theorem a mere six years later. Neverless there seem to be more limited certainties which are accepted in mathematics. The certainty of the whole of arithmetic is beyond us.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / d. Absolute idealism
Fichte, Schelling and Hegel rejected transcendental idealism [Lewis,PB]
     Full Idea: Fichte, Schelling and Hegel were united in their opposition to Kant's Transcendental Idealism.
     From: Peter B. Lewis (Schopenhauer [2012], 3)
     A reaction: That is, they preferred genuine idealism, to the mere idealist attitude Kant felt that we are forced to adopt.
Fichte, Hegel and Schelling developed versions of Absolute Idealism [Lewis,PB]
     Full Idea: At the University of Jena, Fichte, Hegel and Schelling critically developed aspects of Kant's philosophy, each in his own way, thereby giving rise to the movement known as Absolute Idealism, see reality as universal God-like self-consciousness.
     From: Peter B. Lewis (Schopenhauer [2012], 2)
     A reaction: Is asking how anyone can possibly have believed such a bizarre and ridiculous idea a) uneducated, b) stupid, c) unimaginative, or d) very sensible? It sounds awfully like Spinoza's concept of God. Also Anaxagoras.
12. Knowledge Sources / A. A Priori Knowledge / 4. A Priori as Necessities
Why should necessities only be knowable a priori? That Hesperus is Phosporus is known empirically [Devitt]
     Full Idea: Why should we accept that necessities can only be known a priori? Prima facie, some necessities are known empirically; for example, that water is necessarily H2O, and that Hesperus is necessarily Phosphorus.
     From: Michael Devitt (There is no a Priori [2005], §2)
     A reaction: An important question, whatever your view. If the only thing we can know a priori is necessities, it doesn't follow that necessities can only be known a priori. It gets interesting if we say that some necessities can never be known a priori.
How could the mind have a link to the necessary character of reality? [Devitt]
     Full Idea: What non-experiential link to reality could support insights into its necessary character?
     From: Michael Devitt (There is No A Priori (and reply) [2005], 4)
     A reaction: The key to it, I think, is your theory of mind. If you are a substance dualist, then connecting to such deep things looks fine, but if you are a reductive physicalist then it looks absurdly hopeful.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
We explain away a priori knowledge, not as directly empirical, but as indirectly holistically empirical [Devitt]
     Full Idea: We have no need to turn to an a priori explanation of our knowledge of mathematics and logic. Our intuitions that this knowledge is not justified in some direct empirical way is preserved. It is justified in an indirect holistic way.
     From: Michael Devitt (There is no a Priori [2005], §2)
     A reaction: I think this is roughly the right story, but the only way it will work is if we have some sort of theory of abstraction, which gets us up the ladder of generalisations to the ones which, it appears, are necessarily true.
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The idea of the a priori is so obscure that it won't explain anything [Devitt]
     Full Idea: The whole idea of the a priori is too obscure for it to feature in a good explanation of our knowledge of anything.
     From: Michael Devitt (There is no a Priori [2005], §3)
     A reaction: I never like this style of argument. It would be nice if all the components of all our our explanations were crystal clear. Total clarity about anything is probably a hopeless dream, and we may have to settle for murky corners in all explanations.
Some knowledge must be empirical; naturalism implies that all knowledge is like that [Devitt]
     Full Idea: It is overwhelmingly plausible that some knowledge is empirical. The attractive thesis of naturalism is that all knowledge is; there is only one way of knowing.
     From: Michael Devitt (There is No A Priori (and reply) [2005], 1)
     A reaction: How many ways for us to know seems to depend on what faculties we have. We lump our senses together under a single heading. The arrival of data is not the same as the arrival of knowledge. I'm unconvinced that naturalists like me must accept this.
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Some kinds are very explanatory, but others less so, and some not at all [Devitt]
     Full Idea: Explanatory significance, hence naturalness, comes in degrees: positing some kinds may be very explanatory, positing others, only a little bit explanatory, positing others still, not explanatory at all.
     From: Michael Devitt (Natural Kinds and Biological Realism [2009], 4)
     A reaction: He mentions 'cousin' as a natural kind that is not very explanatory of anything. It interests us as humans, but not at all in other animals, it seems. ...Nice thought, though, that two squirrels might be cousins...
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
By digging deeper into the axioms we approach the essence of sciences, and unity of knowedge [Hilbert]
     Full Idea: By pushing ahead to ever deeper layers of axioms ...we also win ever-deeper insights into the essence of scientific thought itself, and become ever more conscious of the unity of our knowledge.
     From: David Hilbert (Axiomatic Thought [1918], [56])
     A reaction: This is the less fashionable idea that scientific essentialism can also be applicable in the mathematic sciences, centring on the project of axiomatisation for logic, arithmetic, sets etc.
27. Natural Reality / G. Biology / 5. Species
We name species as small to share properties, but large enough to yield generalisations [Devitt]
     Full Idea: Our explanatory purposes in introducing a name for a species demand that we draw the lines around a group that is small enough to share a whole lot of important properties and large enough to yield broad generalizations.
     From: Michael Devitt (Resurrecting Biological Essentialism [2008], 10 'Arb')
     A reaction: Grist to my mill. In this reaction slot (16th Oct 2013) I launch my new metaphysical school - welcome to EXPLANATIONISM! Folk metaphysics, and the best philosophical metaphysics, is entirely driven by the needs of explanation.
Species pluralism says there are several good accounts of what a species is [Devitt]
     Full Idea: Species pluralism is the view that there are several equally good accounts of what it is to be a species.
     From: Michael Devitt (Natural Kinds and Biological Realism [2009], 7)
     A reaction: Devitt votes for it, and cites Dupré, among many other. Given the existence of rival accounts, all making good points, it is hard to resist this view.
Species are phenetic, biological, niche, or phylogenetic-cladistic [Devitt, by PG]
     Full Idea: The four main concepts of a species are 'phenetic' (similarity of traits), 'biological species' (interbreeding and isolated), 'ecological niche' (occupying an adaptive zone), or 'phylogenetic-cladistic' (start and finish at splits in lineage)
     From: report of Michael Devitt (Resurrecting Biological Essentialism [2008], 4) by PG - Db (ideas)
     A reaction: [my summary of Devitt's list] Devitt attacks the whole lot, in favour of essentialism - the species being fixed by its underlying explanatory mechanisms.
The higher categories are not natural kinds, so the Linnaean hierarchy should be given up [Devitt]
     Full Idea: The signs are that the higher categories are not natural kinds and so the Linnaean hierarchy must be abandoned. ...This is not abandoning a hierarchy altogether, it is not abandoning a tree of life.
     From: Michael Devitt (Natural Kinds and Biological Realism [2009], 6)
     A reaction: Devitt's underlying point is that the higher and more general kinds do not have an essence (a specific nature), which is the qualification to be a natural kind. They explain nothing. Essence is the hallmark of natural kinds. Hmmm.