Combining Philosophers

All the ideas for Peter Koellner, Paul Horwich and Peter Klein

unexpand these ideas     |    start again     |     specify just one area for these philosophers


33 ideas

2. Reason / A. Nature of Reason / 6. Coherence
Why should we prefer coherent beliefs? [Klein,P]
     Full Idea: A key question for a coherentist is, why should he or she adopt a coherent set of beliefs rather than an incoherent set?
     From: Peter Klein (Infinitism solution to regress problem [2005], 'Step 1')
     A reaction: The point of the question is that the coherentist may have to revert to other criteria in answering it. One could equally ask, why should I believe in tables just because I vividly experience them? Or, why believe 2+2=4, just because it is obvious?
2. Reason / D. Definition / 13. Against Definition
How do we determine which of the sentences containing a term comprise its definition? [Horwich]
     Full Idea: How are we to determine which of the sentences containing a term comprise its definition?
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §2)
     A reaction: Nice question. If I say 'philosophy is the love of wisdom' and 'philosophy bores me', why should one be part of its definition and the other not? What if I stipulated that the second one is part of my definition, and the first one isn't?
3. Truth / A. Truth Problems / 1. Truth
The function of the truth predicate? Understanding 'true'? Meaning of 'true'? The concept of truth? A theory of truth? [Horwich]
     Full Idea: We must distinguish the function of the truth predicate, what it is to understand 'true', the meaning of 'true', grasping the concept of truth, and a theory of truth itself.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.2.8)
     A reaction: It makes you feel tired to think about it. Presumably every other philosophical analysis has to do this many jobs. Clearly Horwich wants to propose one account which will do all five jobs. Personally I don't believe these five are really distinct.
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
Some correspondence theories concern facts; others are built up through reference and satisfaction [Horwich]
     Full Idea: One correspondence theory (e.g. early Wittgenstein) concerns representations and facts; alternatively (Tarski, Davidson) the category of fact is eschewed, and the truth of sentences or propositions is built out of relations of reference and satisfaction.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.7.35)
     A reaction: A helpful distinction. Clearly the notion of a 'fact' is an elusive one ("how many facts are there in this room?"), so it seems quite promising to say that the parts of the sentence correspond, rather than the whole thing.
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
The common-sense theory of correspondence has never been worked out satisfactorily [Horwich]
     Full Idea: The common-sense notion that truth is a kind of 'correspondence with the facts' has never been worked out to anyone's satisfaction.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.1)
     A reaction: I've put this in to criticise it. Philosophy can't work by rejecting theories which can't be 'worked out', and accepting theories (like Tarski's) because they can be 'worked out'. All our theories will end up minimal, and defiant of common sense.
3. Truth / H. Deflationary Truth / 1. Redundant Truth
The redundancy theory cannot explain inferences from 'what x said is true' and 'x said p', to p [Horwich]
     Full Idea: The redundancy theory is unable to account for the inference from "Oscar's claim is true" and "Oscar's claim is that snow is white" to "the proposition 'that snow is white' is true", and hence to "snow is white".
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.2.9)
     A reaction: Earlier objections appealed to the fact that the word 'true' seemed to have a use in ordinary speech, but this seems a much stronger one. In general, showing the role of a term in making inferences pins it down better than ordinary speech does.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Horwich's deflationary view is novel, because it relies on propositions rather than sentences [Horwich, by Davidson]
     Full Idea: Horwich's brave and striking move is to make the primary bearers of truth propositions - not exactly a new idea in itself, but new in the context of a serious attempt to defend deflationism.
     From: report of Paul Horwich (Truth (2nd edn) [1990]) by Donald Davidson - The Folly of Trying to Define Truth p.30
     A reaction: Davidson rejects propositions because they can't be individuated, but I totally accept propositions. I'm puzzled why this would produce a deflationist theory, since I think it points to a much more robust view.
No deflationary conception of truth does justice to the fact that we aim for truth [Horwich]
     Full Idea: It has been suggested that no deflationary conception of truth could do justice to the fact that we aim for the truth.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.2.11)
     A reaction: (He mentions Dummett and Wright). People don't only aim for it - they become very idealistic about it, and sometimes die for it. Personally I think that any study of truth should use as its example police investigations, not philosophical analysis.
The deflationary picture says believing a theory true is a trivial step after believing the theory [Horwich]
     Full Idea: According to the deflationary picture, believing that a theory is true is a trivial step beyond believing the theory.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.2.17)
     A reaction: What has gone wrong with this picture is that you cannot (it seems to me) give a decent account of belief without mentioning truth. To believe a proposition is to hold it true. Hume's emotional account (Idea 2208) makes belief bewildering.
Truth is a useful concept for unarticulated propositions and generalisations about them [Horwich]
     Full Idea: All uses of the truth predicate are explained by the hypothesis that its entire raison d'ętre is to help us say things about unarticulated propositions, and in particular to express generalisations about them.
     From: Paul Horwich (Truth (2nd edn) [1990], Concl)
     A reaction: This certain is a very deflationary notion of truth. Articulated propositions are considered to stand on their own two feet, without need of 'is true'. He makes truth sound like a language game, though. Personally I prefer to mention reality.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Logical form is the aspects of meaning that determine logical entailments [Horwich]
     Full Idea: The logical forms of the sentences in a language are those aspects of their meanings that determine the relations of deductive entailment holding amongst them.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.6.30)
     A reaction: A helpful definition. Not all sentences, therefore, need to have a 'logical form'. Is the logical form the same as the underlying proposition. The two must converge, given that propositions lack the ambiguity that is often found in sentences.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
10. Modality / B. Possibility / 9. Counterfactuals
Problems with Goodman's view of counterfactuals led to a radical approach from Stalnaker and Lewis [Horwich]
     Full Idea: In reaction to two classic difficulties in Goodman's treatment of counterfactuals - the contenability problem and the explication of law - a radically different approach was instigated by Stalnaker (1968) and has been developed by Lewis.
     From: Paul Horwich (Lewis's Programme [1987], p208)
     A reaction: [I record this for study purposes]
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori belief is not necessarily a priori justification, or a priori knowledge [Horwich]
     Full Idea: It is one thing to believe something a priori and another for this belief to be epistemically justified. The latter is required for a priori knowledge.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §8)
     A reaction: Personally I would agree with this, because I don't think anything should count as knowledge if it doesn't have supporting reasons, but fans of a priori knowledge presumably think that certain basic facts are just known. They are a priori justified.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Understanding needs a priori commitment [Horwich]
     Full Idea: Understanding is itself based on a priori commitment.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §12)
     A reaction: This sounds plausible, but needs more justification than Horwich offers. This is the sort of New Rationalist idea I associate with Bonjour. The crucial feature of the New lot is, I take it, their fallibilism. All understanding is provisional.
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
Meaning is generated by a priori commitment to truth, not the other way around [Horwich]
     Full Idea: Our a priori commitment to certain sentences is not really explained by our knowledge of a word's meaning. It is the other way around. We accept a priori that the sentences are true, and thereby provide it with meaning.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §8)
     A reaction: This sounds like a lovely trump card, but how on earth do you decide that a sentence is true if you don't know what it means? Personally I would take it that we are committed to the truth of a proposition, before we have a sentence for it.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Meanings and concepts cannot give a priori knowledge, because they may be unacceptable [Horwich]
     Full Idea: A priori knowledge of logic and mathematics cannot derive from meanings or concepts, because someone may possess such concepts, and yet disagree with us about them.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §12)
     A reaction: A good argument. The thing to focus on is not whether such ideas are a priori, but whether they are knowledge. I think we should employ the word 'intuition' for a priori candidates for knowledge, and demand further justification for actual knowledge.
If we stipulate the meaning of 'number' to make Hume's Principle true, we first need Hume's Principle [Horwich]
     Full Idea: If we stipulate the meaning of 'the number of x's' so that it makes Hume's Principle true, we must accept Hume's Principle. But a precondition for this stipulation is that Hume's Principle be accepted a priori.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §9)
     A reaction: Yet another modern Quinean argument that all attempts at defining things are circular. I am beginning to think that the only a priori knowledge we have is of when a group of ideas is coherent. Calling it 'intuition' might be more accurate.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
A priori knowledge (e.g. classical logic) may derive from the innate structure of our minds [Horwich]
     Full Idea: One potential source of a priori knowledge is the innate structure of our minds. We might, for example, have an a priori commitment to classical logic.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §11)
     A reaction: Horwich points out that to be knowledge it must also say that we ought to believe it. I'm wondering whether if we divided the whole territory of the a priori up into intuitions and then coherent justifications, the whole problem would go away.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / a. Agrippa's trilemma
Infinitism avoids a regress, circularity or arbitrariness, by saying warrant just increases [Klein,P]
     Full Idea: Infinitism can solve the regress problem, because it endorses a warrant-emergent form of reasoning in which warrant increases as the series of reasons lengthens. The theory can avoid both circularity and arbitrariness.
     From: Peter Klein (Infinitism solution to regress problem [2005], 'Step 2')
     A reaction: It nicely avoids arbitrariness by offering a reason for absolutely every belief. I think the way to go may to combine individual Infinitism with a social account of where to set the bar of acceptable justification.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / e. Pro-foundations
If justification is endless, no link in the chain is ultimately justified [Ginet on Klein,P]
     Full Idea: An endless chain of inferential justifications can never ultimately explain why any link in the chain is justified.
     From: comment on Peter Klein (Infinitism solution to regress problem [2005]) by Carl Ginet - Infinitism not solution to regress problem p.148
     A reaction: This strikes me as a mere yearning for foundations. I don't see sense-experience or the natural light of human reason (or the word of God, for that matter) as in any way 'ultimate'. It's all evidence to be evaluated.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Reasons acquire warrant through being part of a lengthening series [Klein,P]
     Full Idea: The infinitist holds that finding a reason, and then another reason for that reason, places it at the beginning of a series where each gains warrant as part of the series. ..Rational credibility increases as the series lengthens.
     From: Peter Klein (Infinitism solution to regress problem [2005], p.137)
     A reaction: A striking problem here for Klein is the status of the first reason, prior to it being supported by a series. Surprisingly, it seems that it would not yet be a justification. Coherence accounts have the same problem, if coherence is the only criterion.
14. Science / C. Induction / 6. Bayes's Theorem
Probability of H, given evidence E, is prob(H) x prob(E given H) / prob(E) [Horwich]
     Full Idea: Bayesianism says ideally rational people should have degrees of belief (not all-or-nothing beliefs), corresponding with probability theory. Probability of H, given evidence E, is prob(H) X prob(E given H) / prob(E).
     From: Paul Horwich (Bayesianism [1992], p.41)
Bayes' theorem explains why very surprising predictions have a higher value as evidence [Horwich]
     Full Idea: Bayesianism can explain the fact that in science surprising predictions have greater evidential value, as the equation produces a higher degree of confirmation.
     From: Paul Horwich (Bayesianism [1992], p.42)
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
We could know the truth-conditions of a foreign sentence without knowing its meaning [Horwich]
     Full Idea: Someone who does not understand German and is told 'Schnee ist weiss' is true if frozen H2O is white, does not understand the German sentence, even though he knows the truth-conditions.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.5.22 n1)
     A reaction: This sounds like a powerful objection to Davidson's well-known claim that meaning is truth-conditions. Horwich likes the idea that meaning is use, but I think a similar objection arises - you can use a sentence well without knowing its meaning.
19. Language / D. Propositions / 1. Propositions
There are Fregean de dicto propositions, and Russellian de re propositions, or a mixture [Horwich]
     Full Idea: There are pure, Fregean, abstract, de dicto propositions, in which a compositional structure is filled only with senses; there are pure, Russellian, concrete, de re propositions, which are filled with referents; and there are mixed propositions.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.6.31)
     A reaction: Once Frege has distinguished sense from reference, this distinction of propositions is likely to follow. The current debate over the internalist and externalist accounts of concepts seems to continue the debate. A mixed strategy sounds good.
19. Language / F. Communication / 6. Interpreting Language / b. Indeterminate translation
Right translation is a mapping of languages which preserves basic patterns of usage [Horwich]
     Full Idea: The right translation between words of two languages is the mapping that preserves basic patterns of usage - where usage is characterised non-semantically, in terms of circumstances of application, assertibility conditions and inferential role.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.6.32)
     A reaction: It still strikes me that if you ask why a piece of language is used in a certain way, you find yourself facing something deeper about meaning than mere usage. Horwich cites Wittgenstein and Quine in his support. Could a machine pass his test?
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
Analyse counterfactuals using causation, not the other way around [Horwich]
     Full Idea: In my view, counterfactual conditionals are analysed in terms of causation.
     From: Paul Horwich (Lewis's Programme [1987], p.208)
     A reaction: This immediately sounds more plausible to me. Counterfactual claims are rather human, whereas causation (if we accept it) seems a feature of nature. The key question is whether some sort of 'dependency' is a feature of counterfactuals.