Combining Philosophers

All the ideas for Phil Dowe, George Boole and Mulligan/Simons/Smith

unexpand these ideas     |    start again     |     specify just one area for these philosophers


13 ideas

3. Truth / B. Truthmakers / 2. Truthmaker Relation
Part-whole is the key relation among truth-makers [Mulligan/Simons/Smith]
     Full Idea: The most important (ontological) relations holding among truth-makers are the part and whole relations.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §6)
     A reaction: Hence Peter Simons goes off and writes the best known book on mereology. Looks very promising to me.
3. Truth / B. Truthmakers / 5. What Makes Truths / a. What makes truths
Truth-makers cannot be the designata of the sentences they make true [Mulligan/Simons/Smith]
     Full Idea: Truth-makers cannot be the designata of the sentences they make true, because sentences with more than one truth-maker would then be ambiguous, and 'a' and 'a exists' would have the same designatum.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §3)
Moments (objects which cannot exist alone) may serve as truth-makers [Mulligan/Simons/Smith]
     Full Idea: A 'moment' is an existentially dependent or non-self-sufficient object, that is, an object which is of such a nature that it cannot exist alone, ....... and we suggest that moments could serve as truth-makers.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §2)
     A reaction: [These three writers invented the term 'truth-maker']
The truth-maker for a sentence may not be unique, or may be a combination, or several separate items [Mulligan/Simons/Smith]
     Full Idea: A proposition may have a minimal truth-maker which is not unique, or a sentence may be made true by no single truth-maker but only by several jointly, or again only by several separately.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §3)
Despite negative propositions, truthmakers are not logical complexes, but ordinary experiences [Mulligan/Simons/Smith]
     Full Idea: Because of negative propositions, investigators of truth-makers have said that they are special non-objectual entities with a logical complexity, but we think a theory is possible in which the truth relation is tied to ordinary and scientific experience.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §6)
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Correspondence has to invoke facts or states of affairs, just to serve as truth-makers [Mulligan/Simons/Smith]
     Full Idea: The correspondence theory of truth invokes a special category of non-objectual entities - facts, states of affairs, or whatever - simply to serve as truth-makers.
     From: Mulligan/Simons/Smith (Truth-makers [1984], §3)
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Boole applied normal algebra to logic, aiming at an algebra of thought [Boole, by Devlin]
     Full Idea: Boole proposed to use the entire apparatus of a school algebra class, with operations such as addition and multiplication, methods to solve equations, and the like, to produce an algebra of thought.
     From: report of George Boole (The Laws of Thought [1854]) by Keith Devlin - Goodbye Descartes Ch.3
     A reaction: The Stoics didn’t use any algebraic notation for their study of propositions, so Boole's idea launched full blown propositional logic, and the rest of modern logic followed. Nice one.
Boole's notation can represent syllogisms and propositional arguments, but not both at once [Boole, by Weiner]
     Full Idea: Boole introduced a new symbolic notation in which it was possible to represent both syllogisms and propositional arguments, ...but not both at once.
     From: report of George Boole (The Laws of Thought [1854], Ch.3) by Joan Weiner - Frege
     A reaction: How important is the development of symbolic notations for the advancement of civilisations? Is there a perfect notation, as used in logical heaven?
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Boole made logic more mathematical, with algebra, quantifiers and probability [Boole, by Friend]
     Full Idea: Boole (followed by Frege) began to turn logic from a branch of philosophy into a branch of mathematics. He brought an algebraic approach to propositions, and introduced the notion of a quantifier and a type of probabilistic reasoning.
     From: report of George Boole (The Laws of Thought [1854], 3.2) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: The result was that logic not only became more mathematical, but also more specialised. We now have two types of philosopher, those steeped in mathematical logic and the rest. They don't always sing from the same songsheet.
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Boole's method was axiomatic, achieving economy, plus multiple interpretations [Boole, by Potter]
     Full Idea: Boole's work was an early example of the axiomatic method, whereby intellectual economy is achieved by studying a set of axioms in which the primitive terms have multiple interpretations.
     From: report of George Boole (The Laws of Thought [1854]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 02 'Boole'
     A reaction: Unclear about this. I suppose the axioms are just syntactic, and a range of semantic interpretations can be applied. Are De Morgan's Laws interpretations, or implications of the syntactic axioms? The latter, I think.
26. Natural Theory / C. Causation / 4. Naturalised causation
Physical causation consists in transference of conserved quantities [Dowe, by Mumford/Anjum]
     Full Idea: For Dowe physical causation consists in transference of conserved quantities.
     From: report of Phil Dowe (Physical Causation [2000]) by S.Mumford/R.Lill Anjum - Getting Causes from Powers 10.2
     A reaction: [see Psillos 2002 on this] This is evidently a modification of the idea of physical causation as energy-transfer, but narrowing it down to exclude trivial cases. I guess. Need better physics.
Causation interaction is an exchange of conserved quantities, such as mass, energy or charge [Dowe, by Psillos]
     Full Idea: Dowe argues that a 'causal process' is a world line of an object with a conserved quantity (such as mass, energy, momentum, charge), and a 'causal interaction' is an exchange between two such objects.
     From: report of Phil Dowe (Physical Causation [2000]) by Stathis Psillos - Causation and Explanation §4.4
     A reaction: This looks very promising. Nice distinction between causal process and causal interaction. 'Conserved quantities' is better physics than just 'energy'. We can hand causation over to the scientist?
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Dowe commends the Conserved Quantity theory as it avoids mention of counterfactuals [Dowe, by Psillos]
     Full Idea: Dowe commends the Conserved Quantity theory because it avoids any mention of counterfactuals.
     From: report of Phil Dowe (Physical Causation [2000]) by Stathis Psillos - Causation and Explanation §4.4
     A reaction: Clearly the truth of a counterfactual is quite a problem for an empiricist/scientist, but one needs to distinguish between reality and our grasp of it. We commit ourselves to counterfactuals, even if causation is transfer of conserved quantities.