Combining Philosophers

All the ideas for Proclus, Engelbretsen,G/Sayward,C and Michael Tooley

unexpand these ideas     |    start again     |     specify just one area for these philosophers


21 ideas

4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
The four 'perfect syllogisms' are called Barbara, Celarent, Darii and Ferio [Engelbretsen/Sayward]
     Full Idea: There are four 'perfect syllogisms': Barbara (every M is P, every S is M, so every S is P); Celarent (no M is P, every S is M, so no S is P); Darii (every M is P, some S is M, so some S is P); Ferio (no M is P, some S is M, so some S is not P).
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 8)
     A reaction: The four names are mnemonics from medieval universities.
Syllogistic logic has one rule: what is affirmed/denied of wholes is affirmed/denied of their parts [Engelbretsen/Sayward]
     Full Idea: It has often been claimed (e.g. by Leibniz) that a single rule governs all syllogistic validity, called 'dictum de omni et null', which says that what is affirmed or denied of any whole is affirmed or denied of any part of that whole.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 8)
     A reaction: This seems to be the rule which is captured by Venn Diagrams.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Syllogistic can't handle sentences with singular terms, or relational terms, or compound sentences [Engelbretsen/Sayward]
     Full Idea: Three common kinds of sentence cannot be put into syllogistic ('categorical') form: ones using singular terms ('Mars is red'), ones using relational terms ('every painter owns some brushes'), and compound sentences.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 8)
4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
Term logic uses expression letters and brackets, and '-' for negative terms, and '+' for compound terms [Engelbretsen/Sayward]
     Full Idea: Term logic begins with expressions and two 'term functors'. Any simple letter is a 'term', any term prefixed by a minus ('-') is a 'negative term', and any pair of terms flanking a plus ('+') is a 'compound term'. Parenthese are used for grouping.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 8)
     A reaction: [see Engelbretsen and Sayward for the full formal system]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
In modern logic all formal validity can be characterised syntactically [Engelbretsen/Sayward]
     Full Idea: One of the key ideas of modern formal logic is that all formally valid inferences can be specified in strictly syntactic terms.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], Ch.2)
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic rests on truth and models, where constructivist logic rests on defence and refutation [Engelbretsen/Sayward]
     Full Idea: Classical logic rests on the concepts of truth and falsity (and usually makes use of a semantic theory based on models), whereas constructivist logic accounts for inference in terms of defense and refutation.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], Intro)
     A reaction: My instincts go with the classical view, which is that inferences do not depend on the human capacity to defend them, but sit there awaiting revelation. My view isn't platonist, because I take the inferences to be rooted in the physical world.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Unlike most other signs, = cannot be eliminated [Engelbretsen/Sayward]
     Full Idea: Unlike ∨, →, ↔, and ∀, the sign = is not eliminable from a logic.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], Ch.3)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Axioms are ω-incomplete if the instances are all derivable, but the universal quantification isn't [Engelbretsen/Sayward]
     Full Idea: A set of axioms is said to be ω-incomplete if, for some universal quantification, each of its instances is derivable from those axioms but the quantification is not thus derivable.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 7)
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
Geometrical proofs do not show causes, as when we prove a triangle contains two right angles [Proclus]
     Full Idea: Geometry does not ask 'why?' ..When from the exterior angle equalling two opposite interior angles it is shown that the interior angles make two right angles, this is not a causal demonstration. With no exterior angle they still equal two right angles.
     From: Proclus (Commentary on Euclid's 'Elements' [c.452], p.161-2), quoted by Paolo Mancosu - Explanation in Mathematics §5
     A reaction: A very nice example. It is hard to imagine how one might demonstrate the cause of the angles making two right angles. If you walk, turn left x°, then turn left y°, then turn left z°, and x+y+z=180°, you end up going in the original direction.
18. Thought / E. Abstraction / 1. Abstract Thought
The origin of geometry started in sensation, then moved to calculation, and then to reason [Proclus]
     Full Idea: It is unsurprising that geometry was discovered in the necessity of Nile land measurement, since everything in the world of generation goes from imperfection to perfection. They would naturally pass from sense-perception to calculation, and so to reason.
     From: Proclus (Commentary on Euclid's 'Elements' [c.452]), quoted by Charles Chihara - A Structural Account of Mathematics 9.12 n55
     A reaction: The last sentence is the core of my view on abstraction, that it proceeds by moving through levels of abstraction, approaching more and more general truths.
26. Natural Theory / C. Causation / 2. Types of cause
Causation is either direct realism, Humean reduction, non-Humean reduction or theoretical realism [Tooley]
     Full Idea: The main approaches to causation I shall refer to as direct realism, Humean reductionism, non-Humean reductionism, and indirect or theoretical realism.
     From: Michael Tooley (Causation and Supervenience [2003], 2)
     A reaction: The first simply observes causation (Anscombe), the second reduces it to regularity (Hume), the third reduces it to other natural features (Fair, Salmon, Dowe), the fourth takes an instrumental approach (Armstrong, Tooley). I favour the third approach.
Causation distinctions: reductionism/realism; Humean/non-Humean states; observable/non-observable [Tooley]
     Full Idea: The three main distinctions concerning causation are between reductionism and realism; between Humean and non-Humean states of affairs; and between states that are immediately observable and those that are not.
     From: Michael Tooley (Causation and Supervenience [2003], 2)
     A reaction: I favour reductionism over realism, because I like the question 'If x is real, what is it made of?' I favour non-Humean states of affairs, because I think constant conjunction is very superficial. I presume the existence of non-observable components.
26. Natural Theory / C. Causation / 4. Naturalised causation
Reductionists can't explain accidents, uninstantiated laws, probabilities, or the existence of any laws [Tooley]
     Full Idea: Reductionist accounts of causation cannot distinguish laws from accidental uniformities, cannot allow for basic uninstantiated laws, can't explain probabilistic laws, and cannot even demonstrate the existence of laws.
     From: Michael Tooley (Causality: Reductionism versus Realism [1990], 2)
     A reaction: I am tempted to say that this is so much the worse for the idea of laws. Extensive regularities only occur for a reason. Probabilities aren't laws. Hypothetical facts will cover uninstantiated laws. Laws are just patterns.
26. Natural Theory / C. Causation / 5. Direction of causation
We can only reduce the direction of causation to the direction of time if we are realist about the latter [Tooley]
     Full Idea: A reductionist can hold that the direction of causation is to be defined in terms of the direction of time; but this response is only available if one is prepared to adopt a realist view of the direction of time.
     From: Michael Tooley (Causation and Supervenience [2003], 4.2.1.2)
     A reaction: A nice illustration of the problems that arise if we try to be reductionist about everything. Personally I prefer my realism to be about time rather than about causation. Time, I would say, makes causation possible, not the other way around.
26. Natural Theory / C. Causation / 8. Particular Causation / a. Observation of causation
Causation is directly observable in pressure on one's body, and in willed action [Tooley]
     Full Idea: The arguments in favour of causation being observable appeal especially to the impression of pressure upon one's body, and to one's introspective awareness of willing, together with the perception of the event which one willed.
     From: Michael Tooley (Causation and Supervenience [2003], 3)
     A reaction: [He cites Evan Fagels] Anscombe also cites words which have causality built into their meaning. This would approach would give priority to mental causation, and would need to demonstrate that similar things happen out in the world.
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
Quantum physics suggests that the basic laws of nature are probabilistic [Tooley]
     Full Idea: Quantum physics seems to lend strong support to the idea that the basic laws of nature may well be probabilistic.
     From: Michael Tooley (Causality: Reductionism versus Realism [1990], 3.2.1)
     A reaction: Groan. Quantum physics should be outlawed from all philosophical discussions. The scientists don't understand it themselves. I'm certainly not going to build my worldview on it. I don't accept that these probabilities could count as 'laws'.
Probabilist laws are compatible with effects always or never happening [Tooley]
     Full Idea: If laws of causation are probabilistic then the law does not entail any restrictions upon the proportion of events that follow a cause: ...it can have absolutely any value from zero to one.
     From: Michael Tooley (Causation and Supervenience [2003], 4.1.3)
     A reaction: This objection applies to an account of laws of nature, and also to definitions of causes as events which increase probabilities. One needn't be fully committed to natural necessity, but it must form some part of the account.
The actual cause may not be the most efficacious one [Tooley]
     Full Idea: A given type of state may be causally efficacious, but not as efficacious as an alternative states, so it is not true that even a direct cause need raise the probability of its effect.
     From: Michael Tooley (Causation and Supervenience [2003], 6.2.4)
     A reaction: My intuition is that explaining causation in terms of probabilities entirely misses the point, which mainly concerns explaining the sense of necessitation in a cause. This idea give me a good reason for my intuition.
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
In counterfactual worlds there are laws with no instances, so laws aren't supervenient on actuality [Tooley]
     Full Idea: If a counterfactual holds in a possible world, that is presumably because a law holds in that world, which means there could be basic causal laws that lack all instances. But then causal laws cannot be totally supervenient on the history of the universe.
     From: Michael Tooley (Causation and Supervenience [2003], 4.1.2)
     A reaction: A nice argument, which sounds like trouble for Lewis. One could deny that the laws have to hold in the counterfactual worlds, but then we wouldn't be able to conceive them.
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
Explaining causation in terms of laws can't explain the direction of causation [Tooley]
     Full Idea: The most serious objection to any account of causation in terms of nomological relations alone is that it can't provide any account of the direction of causation.
     From: Michael Tooley (Causation and Supervenience [2003], 5.1)
     A reaction: Cf. Idea 8393. I am not convinced that there could be an 'account' of the direction of causation, so I am inclined to take it as given. If we take 'powers' (active properties) as basic, they would have a direction built into them.
Causation is a concept of a relation the same in all worlds, so it can't be a physical process [Tooley]
     Full Idea: Against the view that causation is a particular physical process, might it not be argued that the concept of causation is the concept of a relation that possesses a certain intrinsic nature, so that causation must be the same in all possible worlds?
     From: Michael Tooley (Causation and Supervenience [2003], 5.4)
     A reaction: This makes the Humean assumption that laws of nature might be wildly different. I think it is perfectly possible that physical processes are the only way that causation could occur. Alternatively, the generic definition of 'cause' is just very vague.