Combining Philosophers

All the ideas for Reiss,J/Spreger,J, Ram Neta and Stuart Glennan

unexpand these ideas     |    start again     |     specify just one area for these philosophers


17 ideas

2. Reason / A. Nature of Reason / 5. Objectivity
One view says objectivity is making a successful claim which captures the facts [Reiss/Sprenger]
     Full Idea: One conception of objectivity is that the facts are 'out there', and it is the task of scientists to discover, analyze and sytematize them. 'Objective' is a success word: if a claim is objective, it successfully captures some feature of the world.
     From: Reiss,J/Spreger,J (Scientific Objectivity [2014], 2)
     A reaction: This seems to describe truth, rather than objectivity. You can establish accurate facts by subjective means. You can be fairly objective but miss the facts. Objectivity is a mode of thought, not a link to reality.
An absolute scientific picture of reality must not involve sense experience, which is perspectival [Reiss/Sprenger]
     Full Idea: Sense experience is necessarily perspectival, so to the extent to which scientific theories are to track the absolute conception [of reality], they must describe a world different from sense experience.
     From: Reiss,J/Spreger,J (Scientific Objectivity [2014], 2.3)
     A reaction: This is a beautifully simple and interesting point. Even when you are looking at a tree, to grasp its full reality you probably need to close your eyes (which is bad news for artists).
Topic and application involve values, but can evidence and theory choice avoid them? [Reiss/Sprenger]
     Full Idea: There may be values involved in the choice of a research problem, the gathering of evidence, the acceptance of a theory, and the application of results. ...The first and fourth do involve values, but what of the second and third?
     From: Reiss,J/Spreger,J (Scientific Objectivity [2014], 3.1)
     A reaction: [compressed] My own view is that the danger of hidden distorting values has to be recognised, but it is then possible, by honest self-criticism, to reduce them to near zero. Sociological enquiry is different, of course.
The Value-Free Ideal in science avoids contextual values, but embraces epistemic values [Reiss/Sprenger]
     Full Idea: According to the Value-Free Ideal, scientific objectivity is characterised by absence of contextual values and by exclusive commitment to epistemic values in scientific reasoning.
     From: Reiss,J/Spreger,J (Scientific Objectivity [2014], 3.1)
     A reaction: This seems appealing, because it concedes that we cannot be value-free, without suggesting that we are unavoidably swamped by values. The obvious question is whether the two types of value can be sharply distinguished.
Value-free science needs impartial evaluation, theories asserting facts, and right motivation [Reiss/Sprenger]
     Full Idea: Three components of value-free science are Impartiality (appraising theories only by epistemic scientific standards), Neutrality (the theories make no value statements), and Autonomy (the theory is motivated only by science).
     From: Reiss,J/Spreger,J (Scientific Objectivity [2014], 3.3)
     A reaction: [They are summarising Hugh Lacey, 1999, 2002] I'm not sure why the third criterion matters, if the first two are met. If a tobacco company commissions research on cigarettes, that doesn't necessarily make the findings false or prejudiced.
Thermometers depend on the substance used, and none of them are perfect [Reiss/Sprenger]
     Full Idea: Thermometers assume the length of the fluid or gas is a function of temperature, and different substances yield different results. It was decided that different thermometers using the same substance should match, and air was the best, but not perfect.
     From: Reiss,J/Spreger,J (Scientific Objectivity [2014], 4.1)
     A reaction: [summarising Hasok Chang's research] This is a salutary warning that instruments do not necessarily solve the problem of objectivity, though thermometers do seem to be impersonal, and offer relative accuracy (i.e. ranking temperatures). Cf breathalysers.
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
There are reasons 'for which' a belief is held, reasons 'why' it is believed, and reasons 'to' believe it [Neta]
     Full Idea: We must distinguish between something's being a 'reason for which' a creature believes something, and its being a 'reason why' a creature believes something. ...We must also distinguish a 'reason for which' from a 'reason to' believe something.
     From: Ram Neta (The Basing Relation [2011], Intro)
     A reaction: He doesn't spell the distinctions out clearly. I take it that 'for which' is my personal justification, 'why' is the dodgy prejudices that cause my belief. and 'to' is some actual good reasons, of which I may be unaware.
The basing relation of a reason to a belief should both support and explain the belief [Neta]
     Full Idea: A reason has a 'basing relation' with a belief if it (i) rationally supports holding the belief, and (ii) explains why the belief is held.
     From: Ram Neta (The Basing Relation [2011], Intro)
     A reaction: Presumably a false reason would fit this account. Why not talk of 'grounding', or is that word now reserved for metaphysics? If I hypnotise you into a belief, would my hypnotic power be the basing reason? Fits (ii), but not (i).
14. Science / A. Basis of Science / 3. Experiment
The 'experimenter's regress' says success needs reliability, which is only tested by success [Reiss/Sprenger]
     Full Idea: The 'experimenter's regress' says that to know whether a result is correct, one needs to know whether the apparatus is reliable. But one doesn't know whether the apparatus is reliable unless one knows that it produces correct results ...and so on.
     From: Reiss,J/Spreger,J (Scientific Objectivity [2014], 2.3)
     A reaction: [H. Collins (1985), a sociologist] I take this to be a case of the triumphant discovery of a vicious circle which destroys all knowledge turning out to be a benign circle. We build up a coherent relationship between reliable results and good apparatus.
14. Science / B. Scientific Theories / 2. Aim of Science
Empiricist theories are sets of laws, which give explanations and reductions [Glennan]
     Full Idea: In the empiricist tradition theories were understood to be deductive closures of sets of laws, explanations were understood as arguments from covering laws, and reduction was understood as a deductive relationship between laws of different theories.
     From: Stuart Glennan (Mechanisms [2008], 'Intro')
     A reaction: A lovely crisp summary of the whole tradition of philosophy of science from Comte through to Hempel. Mechanism and essentialism are the new players in the game.
14. Science / C. Induction / 6. Bayes's Theorem
The Bayesian approach is explicitly subjective about probabilities [Reiss/Sprenger]
     Full Idea: The Bayesian approach is outspokenly subjective: probability is used for quantifying a scientist's subjective degree of belief in a particular hypothesis. ...It just provides sound rules for learning from experience.
     From: Reiss,J/Spreger,J (Scientific Objectivity [2014], 4.2)
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Modern mechanism need parts with spatial, temporal and function facts, and diagrams [Glennan]
     Full Idea: Modern champions of mechanisms say models should identify both the parts and their spatial, temporal and functional organisation, ...and the practical importance of diagrams in addition to or in place of linguistic representations of mechanisms.
     From: Stuart Glennan (Mechanisms [2008], 'Discover')
     A reaction: Apparently chemists obtain much more refined models by using mathematics than they did by diagrams or 3D models (let alone verbal descriptions). For that reason, I'm thinking that 'model' might be a better term than 'mechanism'.
Mechanistic philosophy of science is an alternative to the empiricist law-based tradition [Glennan]
     Full Idea: To a significant degree, a mechanistic philosophy of science can be seen as an alternative to an earlier logical empiricist tradition in philosophy of science that gave pride of place to laws of nature.
     From: Stuart Glennan (Mechanisms [2008], 'Intro')
     A reaction: Lovely! Someone who actually spells out what's going on here. Most philosophers are far too coy about explaining what their real game is. Mechanism is fine in chemistry and biology. How about in 'mathematical' physics, or sociology?
Mechanisms are either systems of parts or sequences of activities [Glennan]
     Full Idea: There are two sorts of mechanisms: systems consist of collections of parts that interact to produce some behaviour, and processes are sequences of activities which produce some outcome.
     From: Stuart Glennan (Mechanisms [2008], 'Intro')
     A reaction: [compressed] The second one is important because it is more generic, and under that account all kinds the features of the world that need to be explained can be subsumed. E.g. hyperinflation in an economy is a 'mechanism'.
17th century mechanists explained everything by the kinetic physical fundamentals [Glennan]
     Full Idea: 17th century mechanists said that interactions governed by chemical, electrical or gravitational forces would have to be explicable in terms of the operation of some atomistic (or corpuscular) kinetic mechanism.
     From: Stuart Glennan (Mechanisms [2008], 'Intro')
     A reaction: Glennan says science has rejected this, so modern mechanists do not reduce mechanisms to anything in particular.
Unlike the lawlike approach, mechanistic explanation can allow for exceptions [Glennan]
     Full Idea: One of the advantages of the move from nomological to mechanistic modes of explanation is that the latter allows for explanations involving exception-ridden generalizations.
     From: Stuart Glennan (Mechanisms [2008], 'regular')
     A reaction: The lawlike approach has endless problems with 'ceteris paribus' ('all things being equal') laws, where specifying all the other 'things' seems a bit tricky.
26. Natural Theory / C. Causation / 4. Naturalised causation
Since causal events are related by mechanisms, causation can be analysed in that way [Glennan]
     Full Idea: Causation can be analyzed in terms of mechanisms because (except for fundamental causal interactions) causally related events will be connected by intervening mechanisms.
     From: Stuart Glennan (Mechanisms [2008], 'causation')
     A reaction: This won't give us the metaphysics of causation (which concerns the fundamentals), but this strikes me as a very coherent and interesting proposal. He mentions electron interaction as non-mechanistic causation.