Combining Philosophers

All the ideas for Richard Cumberland, Peter Klein and Paul Benacerraf

unexpand these ideas     |    start again     |     specify just one area for these philosophers


41 ideas

2. Reason / A. Nature of Reason / 6. Coherence
Why should we prefer coherent beliefs? [Klein,P]
     Full Idea: A key question for a coherentist is, why should he or she adopt a coherent set of beliefs rather than an incoherent set?
     From: Peter Klein (Infinitism solution to regress problem [2005], 'Step 1')
     A reaction: The point of the question is that the coherentist may have to revert to other criteria in answering it. One could equally ask, why should I believe in tables just because I vividly experience them? Or, why believe 2+2=4, just because it is obvious?
2. Reason / A. Nature of Reason / 7. Status of Reason
If a decision is in accord with right reason, everyone can agree with it [Cumberland]
     Full Idea: No decision can be in accord with right reason unless all can agree on it.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.V.XLVI)
     A reaction: Personally I think anyone who disagrees with this should get out of philosophy (and into sociology, fantasy fiction, ironic game-playing, crime…). Of course 'can' agree is not the same as 'will' agree. You must have faith that good reasons are persuasive.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical truth is always compromising between ordinary language and sensible epistemology [Benacerraf]
     Full Idea: Most accounts of the concept of mathematical truth can be identified with serving one or another of either semantic theory (matching it to ordinary language), or with epistemology (meshing with a reasonable view) - always at the expense of the other.
     From: Paul Benacerraf (Mathematical Truth [1973], Intro)
     A reaction: The gist is that language pulls you towards platonism, and epistemology pulls you towards empiricism. He argues that the semantics must give ground. He's right.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Obtaining numbers by abstraction is impossible - there are too many; only a rule could give them, in order [Benacerraf]
     Full Idea: Not all numbers could possibly have been learned à la Frege-Russell, because we could not have performed that many distinct acts of abstraction. Somewhere along the line a rule had to come in to enable us to obtain more numbers, in the natural order.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.165)
     A reaction: Follows on from Idea 13411. I'm not sure how Russell would deal with this, though I am sure his account cannot be swept aside this easily. Nevertheless this seems powerful and convincing, approaching the problem through the epistemology.
We must explain how we know so many numbers, and recognise ones we haven't met before [Benacerraf]
     Full Idea: Both ordinalists and cardinalists, to account for our number words, have to account for the fact that we know so many of them, and that we can 'recognize' numbers which we've neither seen nor heard.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.166)
     A reaction: This seems an important contraint on any attempt to explain numbers. Benacerraf is an incipient structuralist, and here presses the importance of rules in our grasp of number. Faced with 42,578,645, we perform an act of deconstruction to grasp it.
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
     Full Idea: The fact that Zermelo and Von Neumann disagree on which particular sets the numbers are is fatal to the view that each number is some particular set.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: I agree. A brilliantly simple argument. There is the possibility that one of the two accounts is correct (I would vote for Zermelo), but it is not actually possible to prove it.
There are no such things as numbers [Benacerraf]
     Full Idea: There are no such things as numbers.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: Mill said precisely the same (Idea 9794). I think I agree. There has been a classic error of reification. An abstract pattern is not an object. If I coin a word for all the three-digit numbers in our system, I haven't created a new 'object'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
If numbers are basically the cardinals (Frege-Russell view) you could know some numbers in isolation [Benacerraf]
     Full Idea: If we accept the Frege-Russell analysis of number (the natural numbers are the cardinals) as basic and correct, one thing which seems to follow is that one could know, say, three, seventeen, and eight, but no other numbers.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.164)
     A reaction: It seems possible that someone might only know those numbers, as the patterns of members of three neighbouring families (the only place where they apply number). That said, this is good support for the priority of ordinals. See Idea 13412.
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
     Full Idea: Benacerraf thinks of numbers as being defined by their natural ordering.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §5
     A reaction: My intuition is that cardinality is logically prior to ordinality, since that connects better with the experienced physical world of objects. Just as the fact that people have different heights must precede them being arranged in height order.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
     Full Idea: Benacerraf claims that the concept of a progression is in some way the fundamental arithmetical notion, essential to understanding the idea of a finite cardinal, with a grasp of progressions sufficing for grasping finite cardinals.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Crispin Wright - Frege's Concept of Numbers as Objects 3.xv
     A reaction: He cites Dedekind (and hence the Peano Axioms) as the source of this. The interest is that progression seems to be fundamental to ordianls, but this claims it is also fundamental to cardinals. Note that in the first instance they are finite.
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
     Full Idea: Any set has k members if and only if it can be put into one-to-one correspondence with the set of numbers less than or equal to k.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: This is 'Ernie's' view of things in the paper. This defines the finite cardinal numbers in terms of the finite ordinal numbers. He has already said that the set of numbers is well-ordered.
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
     Full Idea: I would disagree with Quine. The explanation of cardinality - i.e. of the use of numbers for 'transitive counting', as I have called it - is part and parcel of the explication of number.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I n2)
     A reaction: Quine says numbers are just a progression, with transitive counting as a bonus. Interesting that Benacerraf identifies cardinality with transitive counting. I would have thought it was the possession of numerical quantity, not ascertaining it.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
     Full Idea: Learning number words in the right order is counting 'intransitively'; using them as measures of sets is counting 'transitively'. ..It seems possible for someone to learn the former without learning the latter.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Scruton's nice question (Idea 3907) is whether you could be said to understand numbers if you could only count intransitively. I would have thought such a state contained no understanding at all of numbers. Benacerraf agrees.
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
     Full Idea: It seems that it is possible for someone to learn to count intransitively without learning to count transitively. But not vice versa.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Benacerraf favours the priority of the ordinals. It is doubtful whether you have grasped cardinality properly if you don't know how to count things. Could I understand 'he has 27 sheep', without understanding the system of natural numbers?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
     Full Idea: The application of a system of numbers is counting and measurement.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: A simple point, but it needs spelling out. Counting seems prior, in experience if not in logic. Measuring is a luxury you find you can indulge in (by imagining your quantity) split into parts, once you have mastered counting.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
     Full Idea: Ernie's number progression is [φ],[φ,[φ]],[φ,[φ],[φ,[φ,[φ]]],..., whereas Johnny's is [φ],[[φ]],[[[φ]]],... For Ernie 3 belongs to 17, not for Johnny. For Ernie 17 has 17 members; for Johnny it has one.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: Benacerraf's point is that there is no proof-theoretic way to choose between them, though I am willing to offer my intuition that Ernie (Zermelo) gives the right account. Seventeen pebbles 'contains' three pebbles; you must pass 3 to count to 17.
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
     Full Idea: For Ernie, the successor of a number x was the set consisting of x and all the members of x, while for Johnny the successor of x was simply [x], the unit set of x - the set whose only member is x.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: See also Idea 9900. Benacerraf's famous point is that it doesn't seem to make any difference to arithmetic which version of set theory you choose as its basis. I take this to conclusively refute the idea that numbers ARE sets.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Disputes about mathematical objects seem irrelevant, and mathematicians cannot resolve them [Benacerraf, by Friend]
     Full Idea: If two children were brought up knowing two different set theories, they could entirely agree on how to do arithmetic, up to the point where they discuss ontology. There is no mathematical way to tell which is the true representation of numbers.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Benacerraf ends by proposing a structuralist approach. If mathematics is consistent with conflicting set theories, then those theories are not shedding light on mathematics.
No particular pair of sets can tell us what 'two' is, just by one-to-one correlation [Benacerraf, by Lowe]
     Full Idea: Hume's Principle can't tell us what a cardinal number is (this is one lesson of Benacerraf's well-known problem). An infinity of pairs of sets could actually be the number two (not just the simplest sets).
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by E.J. Lowe - The Possibility of Metaphysics 10.3
     A reaction: The drift here is for numbers to end up as being basic, axiomatic, indefinable, universal entities. Since I favour patterns as the basis of numbers, I think the basis might be in a pre-verbal experience, which even a bird might have, viewing its eggs.
If ordinal numbers are 'reducible to' some set-theory, then which is which? [Benacerraf]
     Full Idea: If a particular set-theory is in a strong sense 'reducible to' the theory of ordinal numbers... then we can still ask, but which is really which?
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIB)
     A reaction: A nice question about all reductions. If we reduce mind to brain, does that mean that brain is really just mind. To have a direction (up/down?), reduction must lead to explanation in a single direction only. Do numbers explain sets?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
An adequate account of a number must relate it to its series [Benacerraf]
     Full Idea: No account of an individual number is adequate unless it relates that number to the series of which it is a member.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.169)
     A reaction: Thus it is not totally implausible to say that 2 is several different numbers or concepts, depending on whether you see it as a natural number, an integer, a rational, or a real. This idea is the beginning of modern structuralism.
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
     Full Idea: If any recursive sequence whatever would do to explain ordinal numbers suggests that what is important is not the individuality of each element, but the structure which they jointly exhibit.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This sentence launched the whole modern theory of Structuralism in mathematics. It is hard to see what properties a number-as-object could have which would entail its place in an ordinal sequence.
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
     Full Idea: 'Objects' do not do the job of numbers singly; the whole system performs the job or nothing does. I therefore argue that numbers could not be objects at all.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This thought is explored by structuralism - though it is a moot point where mere 'nodes' in a system (perhaps filled with old bits of furniture) will do the job either. No one ever explains the 'power' of numbers (felt when you do a sudoku). Causal?
The number 3 defines the role of being third in a progression [Benacerraf]
     Full Idea: Any object can play the role of 3; that is, any object can be the third element in some progression. What is peculiar to 3 is that it defines that role, not by being a paradigm, but by representing the relation of any third member of a progression.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: An interesting early attempt to spell out the structuralist idea. I'm thinking that the role is spelled out by the intersection of patterns which involve threes.
Number words no more have referents than do the parts of a ruler [Benacerraf]
     Full Idea: Questions of the identification of the referents of number words should be dismissed as misguided in just the way that a question about the referents of the parts of a ruler would be seen as misguided.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: What a very nice simple point. It would be very strange to insist that every single part of the continuum of a ruler should be regarded as an 'object'.
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
     Full Idea: Mathematical objects have no properties other than those relating them to other 'elements' of the same structure.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], p.285), quoted by Fraser MacBride - Structuralism Reconsidered §3 n13
     A reaction: Suppose we only had one number - 13 - and we all cried with joy when we recognised it in a group of objects. Would that be a number, or just a pattern, or something hovering between the two?
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
     Full Idea: Benacerraf raises the question how numbers can be 'objects' if they have no properties except order in a particular ω-sequence.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965], p.301) by Hilary Putnam - Mathematics without Foundations
     A reaction: Frege certainly didn't think that order was their only property (see his 'borehole' metaphor in Grundlagen). It might be better to say that they are objects which only have relational properties.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
     Full Idea: The identification of numbers with objects works wholesale but fails utterly object by object.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This seems to be a glaring problem for platonists. You can stare at 1728 till you are blue in the face, but it only begins to have any properties at all once you examine its place in the system. This is unusual behaviour for an object.
Realists have semantics without epistemology, anti-realists epistemology but bad semantics [Benacerraf, by Colyvan]
     Full Idea: Benacerraf argues that realists about mathematical objects have a nice normal semantic but no epistemology, and anti-realists have a good epistemology but an unorthodox semantics.
     From: report of Paul Benacerraf (Mathematical Truth [1973]) by Mark Colyvan - Introduction to the Philosophy of Mathematics 1.2
The platonist view of mathematics doesn't fit our epistemology very well [Benacerraf]
     Full Idea: The principle defect of the standard (platonist) account of mathematical truth is that it appears to violate the requirement that our account be susceptible to integration into our over-all account of knowledge.
     From: Paul Benacerraf (Mathematical Truth [1973], III)
     A reaction: Unfortunately he goes on to defend a causal theory of justification (fashionable at that time, but implausible now). Nevertheless, his general point is well made. Your theory of what mathematics is had better make it knowable.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are not predicates, as they function very differently from adjectives [Benacerraf]
     Full Idea: The unpredicative nature of number words can be seen by noting how different they are from, say, ordinary adjectives, which do function as predicates.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: He points out that 'x is seventeen' is a rare construction in English, unlike 'x is happy/green/interesting', and that numbers outrank all other adjectives (having to appear first in any string of them).
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
The set-theory paradoxes mean that 17 can't be the class of all classes with 17 members [Benacerraf]
     Full Idea: In no consistent theory is there a class of all classes with seventeen members. The existence of the paradoxes is a good reason to deny to 'seventeen' this univocal role of designating the class of all classes with seventeen members.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: This was Frege's disaster, and seems to block any attempt to achieve logicism by translating numbers into sets. It now seems unclear whether set theory is logic, or mathematics, or sui generis.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identity statements make sense only if there are possible individuating conditions [Benacerraf]
     Full Idea: Identity statements make sense only in contexts where there exist possible individuating conditions.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], III)
     A reaction: He is objecting to bizarre identifications involving numbers. An identity statement may be bizarre even if we can clearly individuate the two candidates. Winston Churchill is a Mars Bar. Identifying George Orwell with Eric Blair doesn't need a 'respect'.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / a. Agrippa's trilemma
Infinitism avoids a regress, circularity or arbitrariness, by saying warrant just increases [Klein,P]
     Full Idea: Infinitism can solve the regress problem, because it endorses a warrant-emergent form of reasoning in which warrant increases as the series of reasons lengthens. The theory can avoid both circularity and arbitrariness.
     From: Peter Klein (Infinitism solution to regress problem [2005], 'Step 2')
     A reaction: It nicely avoids arbitrariness by offering a reason for absolutely every belief. I think the way to go may to combine individual Infinitism with a social account of where to set the bar of acceptable justification.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / e. Pro-foundations
If justification is endless, no link in the chain is ultimately justified [Ginet on Klein,P]
     Full Idea: An endless chain of inferential justifications can never ultimately explain why any link in the chain is justified.
     From: comment on Peter Klein (Infinitism solution to regress problem [2005]) by Carl Ginet - Infinitism not solution to regress problem p.148
     A reaction: This strikes me as a mere yearning for foundations. I don't see sense-experience or the natural light of human reason (or the word of God, for that matter) as in any way 'ultimate'. It's all evidence to be evaluated.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Reasons acquire warrant through being part of a lengthening series [Klein,P]
     Full Idea: The infinitist holds that finding a reason, and then another reason for that reason, places it at the beginning of a series where each gains warrant as part of the series. ..Rational credibility increases as the series lengthens.
     From: Peter Klein (Infinitism solution to regress problem [2005], p.137)
     A reaction: A striking problem here for Klein is the status of the first reason, prior to it being supported by a series. Surprisingly, it seems that it would not yet be a justification. Coherence accounts have the same problem, if coherence is the only criterion.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / d. Biological ethics
Natural law is supplied to the human mind by reality and human nature [Cumberland]
     Full Idea: Some truths of natural law, concerning guides to moral good and evil, and duties not laid down by civil law and government, are necessarily supplied ot the human mind by the nature of things and of men.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.I.I)
     A reaction: I agree that some moral truths have the power of self-evidence. If you say they are built into the mind, we now ask what did the building, and evolution is the only answer, and hence we distance ourselves from the truths, seeing them as strategies.
22. Metaethics / B. Value / 1. Nature of Value / f. Ultimate value
If there are different ultimate goods, there will be conflicting good actions, which is impossible [Cumberland]
     Full Idea: If there be posited different ultimate ends, whose causes are opposed to each other, then there will be truly good actions likewise opposed to each other, which is impossible.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.V.XVI)
     A reaction: A very interesting argument for there being one good rather than many, and an argument which I don't recall in any surviving Greek text. A response might be to distinguish between what is 'right' and what is 'good'. See David Ross.
23. Ethics / E. Utilitarianism / 1. Utilitarianism
The happiness of individuals is linked to the happiness of everyone (which is individuals taken together) [Cumberland]
     Full Idea: The happiness of each person cannot be separated from the happiness of all, because the whole is no different from the parts taken together.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.I.VI)
     A reaction: Sounds suspiciously like the fallacy of composition (Idea 6219). An objection to utilitarianism is its assumption that a group of people have a 'total happiness' that is different from their individual states. Still, Cumberland is on to utilitarianism.
The happiness of all contains the happiness of each, and promotes it [Cumberland]
     Full Idea: The common happiness of all contains the greatest happiness for each, and most effectively promotes it. …There is no path leading anyone to his own happiness, other than the path which leads all to the common happiness.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.I.VI)
     A reaction: I take this as a revolutionary idea, which leads to utilitarianism. It is doing what seemed to the Greeks unthinkable, which is combining hedonism with altruism. There is no proof for it, but it is a wonderful clarion call for building a civil society.
25. Social Practice / D. Justice / 2. The Law / c. Natural law
Natural law is immutable truth giving moral truths and duties independent of society [Cumberland]
     Full Idea: Natural law is certain propositions of immutable truth, which guide voluntary actions about the choice of good and avoidance of evil, and which impose an obligation to act, even without regard to civil laws, and ignoring compacts of governments.
     From: Richard Cumberland (De Legibus Naturae [1672], Ch.I.I)
     A reaction: Not a popular view, but I am sympathetic. If you are in a foreign country and find a person lying in pain, there is a terrible moral deficiency in anyone who just ignores such a thing. No legislation can take away a person's right of self-defence.