Combining Philosophers

All the ideas for Richard Posner, Werner Heisenberg and Philip Kitcher

unexpand these ideas     |    start again     |     specify just one area for these philosophers


55 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher]
     Full Idea: Though it may appear that the intuitionist is providing an account of the connectives couched in terms of assertability conditions, the notion of assertability is a derivative one, ultimately cashed out by appealing to the concept of truth.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: I have quite a strong conviction that Kitcher is right. All attempts to eliminate truth, as some sort of ideal at the heart of ordinary talk and of reasoning, seems to me to be doomed.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic is our preconditions for assessing empirical evidence [Kitcher]
     Full Idea: In my terminology, classical logic (or at least, its most central tenets) consists of propositional preconditions for our assessing empirical evidence in the way we do.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §VII)
     A reaction: I like an even stronger version of this - that classical logic arises out of our experiences of things, and so we are just assessing empirical evidence in terms of other (generalised) empirical evidence. Logic results from induction. Very unfashionable.
I believe classical logic because I was taught it and use it, but it could be undermined [Kitcher]
     Full Idea: I believe the laws of classical logic, in part because I was taught them, and in part because I think I see how those laws are used in assessing evidence. But my belief could easily be undermined by experience.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §VII)
     A reaction: Quine has one genuine follower! The trouble is his first sentence would fit witch-doctoring just as well. Kitcher went to Cambridge; I hope he doesn't just believe things because he was taught them, or because he 'sees how they are used'!
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Kitcher says maths is an idealisation of the world, and our operations in dealing with it [Kitcher, by Resnik]
     Full Idea: Kitcher says maths is an 'idealising theory', like some in physics; maths idealises features of the world, and practical operations, such as segregating and matching (numbering), measuring, cutting, moving, assembling (geometry), and collecting (sets).
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984]) by Michael D. Resnik - Maths as a Science of Patterns One.4.2.2
     A reaction: This seems to be an interesting line, which is trying to be fairly empirical, and avoid basing mathematics on purely a priori understanding. Nevertheless, we do not learn idealisation from experience. Resnik labels Kitcher an anti-realist.
Mathematical a priorism is conceptualist, constructivist or realist [Kitcher]
     Full Idea: Proposals for a priori mathematical knowledge have three main types: conceptualist (true in virtue of concepts), constructivist (a construct of the human mind) and realist (in virtue of mathematical facts).
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.3)
     A reaction: Realism is pure platonism. I think I currently vote for conceptualism, with the concepts deriving from the concrete world, and then being extended by fictional additions, and shifts in the notion of what 'number' means.
The interest or beauty of mathematics is when it uses current knowledge to advance undestanding [Kitcher]
     Full Idea: What makes a question interesting or gives it aesthetic appeal is its focussing of the project of advancing mathematical understanding, in light of the concepts and systems of beliefs already achieved.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.3)
     A reaction: Kitcher defends explanation (the source of understanding, presumably) in terms of unification with previous theories (the 'concepts and systems'). I always have the impression that mathematicians speak of 'beauty' when they see economy of means.
The 'beauty' or 'interest' of mathematics is just explanatory power [Kitcher]
     Full Idea: Insofar as we can honor claims about the aesthetic qualities or the interest of mathematical inquiries, we should do so by pointing to their explanatory power.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.4)
     A reaction: I think this is a good enough account for me (but probably not for my friend Carl!). Beautiful cars are particularly streamlined. Beautiful people look particularly healthy. A beautiful idea is usually wide-ranging.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers stand to measurement as natural numbers stand to counting [Kitcher]
     Full Idea: The real numbers stand to measurement as the natural numbers stand to counting.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
Complex numbers were only accepted when a geometrical model for them was found [Kitcher]
     Full Idea: An important episode in the acceptance of complex numbers was the development by Wessel, Argand, and Gauss, of a geometrical model of the numbers.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: The model was in terms of vectors and rotation. New types of number are spurned until they can be shown to integrate into a range of mathematical practice, at which point mathematicians change the meaning of 'number' (without consulting us).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A one-operation is the segregation of a single object [Kitcher]
     Full Idea: We perform a one-operation when we perform a segregative operation in which a single object is segregated.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.3)
     A reaction: This is part of Kitcher's empirical but constructive account of arithmetic, which I find very congenial. He avoids the word 'unit', and goes straight to the concept of 'one' (which he treats as more primitive than zero).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The old view is that mathematics is useful in the world because it describes the world [Kitcher]
     Full Idea: There is an old explanation of the utility of mathematics. Mathematics describes the structural features of our world, features which are manifested in the behaviour of all the world's inhabitants.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: He only cites Russell in modern times as sympathising with this view, but Kitcher gives it some backing. I think the view is totally correct. The digression produced by Cantorian infinities has misled us.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
With infinitesimals, you divide by the time, then set the time to zero [Kitcher]
     Full Idea: The method of infinitesimals is that you divide by the time, and then set the time to zero.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 10.2)
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Mathematical intuition is not the type platonism needs [Kitcher]
     Full Idea: The intuitions of which mathematicians speak are not those which Platonism requires.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.3)
     A reaction: The point is that it is not taken to be a 'special' ability, but rather a general insight arising from knowledge of mathematics. I take that to be a good account of intuition, which I define as 'inarticulate rationality'.
If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher]
     Full Idea: If mathematical statements are don't merely report features of transient and private mental entities, it is unclear how pure intuition generates mathematical knowledge. But if they are, they express different propositions for different people and times.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.1)
     A reaction: This seems to be the key dilemma which makes Kitcher reject intuition as an a priori route to mathematics. We do, though, just seem to 'see' truths sometimes, and are unable to explain how we do it.
Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher]
     Full Idea: The process of pure intuition does not measure up to the standards required of a priori warrants not because it is sensuous but because it is fallible.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.2)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematical knowledge arises from basic perception [Kitcher]
     Full Idea: Mathematical knowledge arises from rudimentary knowledge acquired by perception.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: This is an empiricist manifesto, which asserts his allegiance to Mill, and he gives a sophisticated account of how higher mathematics can be accounted for in this way. Well, he tries to.
My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher]
     Full Idea: The constructivist position I defend claims that mathematics is an idealized science of operations which can be performed on objects in our environment. It offers an idealized description of operations of collecting and ordering.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: I think this is right. What is missing from Kitcher's account (and every other account I've met) is what is meant by 'idealization'. How do you go about idealising something? Hence my interest in the psychology of abstraction.
We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher]
     Full Idea: I propose that a very limited amount of our mathematical knowledge can be obtained by observations and manipulations of ordinary things. Upon this small base we erect the powerful general theories of modern mathematics.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 05.2)
     A reaction: I agree. The three related processes that take us from the experiential base of mathematics to its lofty heights are generalisation, idealisation and abstraction.
The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher]
     Full Idea: Proponents of complex numbers had ultimately to argue that the new operations shared with the original paradigms a susceptibility to construal in physical terms. The geometrical models of complex numbers answered to this need.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: [A nice example of the verbose ideas which this website aims to express in plain English!] The interest is not that they had to be described physically (which may pander to an uninformed audience), but that they could be so described.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
If it can't be expressed mathematically, it can't occur in nature? [Heisenberg]
     Full Idea: The solution was to turn around the question How can one in the known mathematical scheme express a given experimental situation? and ask Is it true that only such situations can arise in nature as can be expressed in the mathematical formalism?
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
     A reaction: This has the authority of the great Heisenberg, and is the ultimate expression of 'mathematical physics', beyond anything Galileo or Newton ever conceived. I suppose Pythagoras would have thought that Heisenberg was obviously right.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Analyticity avoids abstract entities, but can there be truth without reference? [Kitcher]
     Full Idea: Philosophers who hope to avoid commitment to abstract entities by claiming that mathematical statements are analytic must show how analyticity is, or provides a species of, truth not requiring reference.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.I)
     A reaction: [the last part is a quotation from W.D. Hart] Kitcher notes that Frege has a better account, because he provides objects to which reference can be made. I like this idea, which seems to raise a very large question, connected to truthmakers.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Arithmetic is an idealizing theory [Kitcher]
     Full Idea: I construe arithmetic as an idealizing theory.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: I find 'generalising' the most helpful word, because everyone seems to understand and accept the idea. 'Idealisation' invokes 'ideals', which lots of people dislike, and lots of philosophers seem to have trouble with 'abstraction'.
Arithmetic is made true by the world, but is also made true by our constructions [Kitcher]
     Full Idea: I want to suggest both that arithmetic owes its truth to the structure of the world and that arithmetic is true in virtue of our constructive activity.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: Well said, but the problem seems no more mysterious to me than the fact that trees grow in the woods and we build houses out of them. I think I will declare myself to be an 'empirical constructivist' about mathematics.
We develop a language for correlations, and use it to perform higher level operations [Kitcher]
     Full Idea: The development of a language for describing our correlational activity itself enables us to perform higher level operations.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: This is because all language itself (apart from proper names) is inherently general, idealised and abstracted. He sees the correlations as the nested collections expressed by set theory.
Constructivism is ontological (that it is the work of an agent) and epistemological (knowable a priori) [Kitcher]
     Full Idea: The constructivist ontological thesis is that mathematics owes its truth to the activity of an actual or ideal subject. The epistemological thesis is that we can have a priori knowledge of this activity, and so recognise its limits.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: The mention of an 'ideal' is Kitcher's personal view. Kitcher embraces the first view, and rejects the second.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualists say we know mathematics a priori by possessing mathematical concepts [Kitcher]
     Full Idea: Conceptualists claim that we have basic a priori knowledge of mathematical axioms in virtue of our possession of mathematical concepts.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.1)
     A reaction: I sympathise with this view. If concepts are reasonably clear, they will relate to one another in certain ways. How could they not? And how else would you work out those relations other than by thinking about them?
If meaning makes mathematics true, you still need to say what the meanings refer to [Kitcher]
     Full Idea: Someone who believes that basic truths of mathematics are true in virtue of meaning is not absolved from the task of saying what the referents of mathematical terms are, or ...what mathematical reality is like.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.6)
     A reaction: Nice question! He's a fan of getting at the explanatory in mathematics.
7. Existence / D. Theories of Reality / 2. Realism
Quantum theory shows that exact science does not need dogmatic realism [Heisenberg]
     Full Idea: It is only through quantum theory that we have learned that exact science is possible without the basis of dogmatic realism.
     From: Werner Heisenberg (Physics and Philosophy [1958], 05)
7. Existence / D. Theories of Reality / 4. Anti-realism
Quantum theory does not introduce minds into atomic events [Heisenberg]
     Full Idea: Certainly quantum theory does not contain genuine subjective features, it does not introduce the mind of the physicist as a part of the atomic event.
     From: Werner Heisenberg (Physics and Philosophy [1958], 03)
     A reaction: This should be digested by anyone who wants to erect some dodgy anti-realist, idealist, subjective metaphysics on the basis of the Copenhagen interpretation of quantum mechanics.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
A 'probability wave' is a quantitative version of Aristotle's potential, a mid-way type of reality [Heisenberg]
     Full Idea: The 1924 idea of the 'probability wave' meant a tendency for something. It was a quantitative version of the old concept of 'potentia' in Aristotelian philosophy ...a strange kind of physical reality just in the middle between possibility and reality.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
     A reaction: [compressed] As far as I can see, he is talking about a disposition or power, which is exactly between a mere theoretical possibility and an actuality. See the Mumford/Lill Anjum proposal for a third modal value, between possible and necessary.
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Abstract objects were a bad way of explaining the structure in mathematics [Kitcher]
     Full Idea: The original introduction of abstract objects was a bad way of doing justice to the insight that mathematics is concerned with structure.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: I'm a fan of explanations in metaphysics, and hence find the concept of 'bad' explanations in metaphysics particularly intriguing.
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
We can retain the idea of 'substance', as indestructible mass or energy [Heisenberg]
     Full Idea: One could consider mass and energy as two different forms of the same 'substance' and thereby keep the idea of substance as indestructible.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
9. Objects / C. Structure of Objects / 2. Hylomorphism / b. Form as principle
Basic particles have a mathematical form, which is more important than their substance [Heisenberg]
     Full Idea: The smallest parts of matter are not the fundamental Beings, as in the philosophy of Democritus, but are mathematical forms. Here it is quite evident that the form is more important than the substance of which it is the form.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: Heisenberg is quite consciously endorsing hylomorphism here, with a Pythagorean twist to it.
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Many necessities are inexpressible, and unknowable a priori [Kitcher]
     Full Idea: There are plenty of necessary truths that we are unable to express, let alone know a priori.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §II)
     A reaction: This certainly seems to put paid to any simplistic idea that the a priori and the necessary are totally coextensive. We might, I suppose, claim that all necessities are a priori for the Archangel Gabriel (or even a very bright cherub). Cf. Idea 12429.
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Knowing our own existence is a priori, but not necessary [Kitcher]
     Full Idea: What is known a priori may not be necessary, if we know a priori that we ourselves exist and are actual.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §II)
     A reaction: Compare Idea 12428, which challenges the inverse of this relationship. This one looks equally convincing, and Kripke adds other examples of contingent a priori truths, such as those referring to the metre rule in Paris.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori knowledge comes from available a priori warrants that produce truth [Kitcher]
     Full Idea: X knows a priori that p iff the belief was produced with an a priori warrant, which is a process which is available to X, and this process is a warrant, and it makes p true.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.4)
     A reaction: [compression of a formal spelling-out] This is a modified version of Goldman's reliabilism, for a priori knowledge. It sounds a bit circular and uninformative, but it's a start.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
In long mathematical proofs we can't remember the original a priori basis [Kitcher]
     Full Idea: When we follow long mathematical proofs we lose our a priori warrants for their beginnings.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.2)
     A reaction: Kitcher says Descartes complains about this problem several times in his 'Regulae'. The problem runs even deeper into all reasoning, if you become sceptical about memory. You have to remember step 1 when you do step 2.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Knowledge is a priori if the experience giving you the concepts thus gives you the knowledge [Kitcher]
     Full Idea: Knowledge is independent of experience if any experience which would enable us to acquire the concepts involved would enable us to have the knowledge.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.3)
     A reaction: This is the 'conceptualist' view of a priori knowledge, which Kitcher goes on to attack, preferring a 'constructivist' view. The formula here shows that we can't divorce experience entirely from a priori thought. I find conceptualism a congenial view.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
We have some self-knowledge a priori, such as knowledge of our own existence [Kitcher]
     Full Idea: One can make a powerful case for supposing that some self-knowledge is a priori. At most, if not all, of our waking moments, each of us knows of herself that she exists.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.6)
     A reaction: This is a begrudging concession from a strong opponent to the whole notion of a priori knowledge. I suppose if you ask 'what can be known by thought alone?' then truths about thought ought to be fairly good initial candidates.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
A 'warrant' is a process which ensures that a true belief is knowledge [Kitcher]
     Full Idea: A 'warrant' refers to those processes which produce belief 'in the right way': X knows that p iff p, and X believes that p, and X's belief that p was produced by a process which is a warrant for it.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.2)
     A reaction: That is, a 'warrant' is a justification which makes a belief acceptable as knowledge. Traditionally, warrants give you certainty (and are, consequently, rather hard to find). I would say, in the modern way, that warrants are agreed by social convention.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
If experiential can defeat a belief, then its justification depends on the defeater's absence [Kitcher, by Casullo]
     Full Idea: According to Kitcher, if experiential evidence can defeat someone's justification for a belief, then their justification depends on the absence of that experiential evidence.
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984], p.89) by Albert Casullo - A Priori Knowledge 2.3
     A reaction: Sounds implausible. There are trillions of possible defeaters for most beliefs, but to say they literally depend on trillions of absences seems a very odd way of seeing the situation
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
We give a mathematical account of a system of natural connections in order to clarify them [Heisenberg]
     Full Idea: When we represent a group of connections by a closed and coherent set of concepts, axioms, definitions and laws which in turn is represented by a mathematical scheme we have isolated and idealised them with the purpose of clarification.
     From: Werner Heisenberg (Physics and Philosophy [1958], 06)
     A reaction: Attacks on the regularity theory of laws, and the notion that explanation is by laws, tend to downplay this point - that obtaining clarity and precision is a sort of explanation, even if it fails to go deeper.
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
You can only explain the qualities of large objects using entities which lack those qualities [Heisenberg]
     Full Idea: It is impossible to explain the manifest qualities of ordinary middle-sized objects except by tracing these back to the behaviour of entities which themselves no longer possess these qualities.
     From: Werner Heisenberg (Ancient Thought in Modern Physics [1937], p.119), quoted by William Lycan - Consciousness 8.10
     A reaction: Compare the similar wonderful remark by Lucretius (Idea 5713). If we accept this as a general principle for all of nature (including us) - and I do - then it is silly to complain that consciousness isn't found in basic physics.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation trades off accuracy for simplicity, in varying degrees [Kitcher]
     Full Idea: To idealize is to trade accuracy in describing the actual for simplicity of description, and the compromise can sometimes be struck in different ways.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: There is clearly rather more to idealisation than mere simplicity. A matchstick man is not an ideal man.
24. Political Theory / D. Ideologies / 5. Democracy / a. Nature of democracy
Democracy is competition for support of the people, guided by self-interest on all sides [Posner]
     Full Idea: Democratic politics is a competition among self-interested politicians, constituting a ruling class, for the support of the people, also assumed to be self-interested, and none too interested or well informed about politics.
     From: Richard Posner (Law, Pragmatism and Democracy [2003], p.144), quoted by Andrew Shorten - Contemporary Political Theory 05
     A reaction: This articulates the 'competitive' view of democracy, as simply a technique for establishing legitimacy. Posner is also an economist, and they also assume that everyone is wholly self-interested, which may be why they are so frequently wrong.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Seven theories in science: mechanics, heat, electricity, quantum, particles, relativity, life [Heisenberg, by PG]
     Full Idea: Science has seven closed systems of concepts and axioms: Newtonian mechanics; the theory of heat; electricity and magnetism; quantum theory; the theory of elementary particles; general relativity; and the theory of organic life.
     From: report of Werner Heisenberg (Physics and Philosophy [1958], 06) by PG - Db (ideas)
     A reaction: [my summary of pp.86-88 and 92] It is interesting to have spelled out that there are number of 'closed' theories, which are only loosely connected to one another. New discoveries launch whole new theories, instead of being subsumed.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / a. Energy
Energy is that which moves, and is the substance from which everything is made [Heisenberg]
     Full Idea: Energy is the substance from which all elementary particles, all atoms and therefore all things are made, and energy is that which moves.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: I'm not sure what energy is, but I like this because it says that nature is fundamentally active. Nothing makes sense without that basic assumption (on which Leibniz continually insists).
Energy is an unchanging substance, having many forms, and causing all change [Heisenberg]
     Full Idea: Energy is a substance, since its total amount does not change. ...Energy can be changed into motion, into heat, into light and into tension. Energy may be called the fundamental cause for all change in the world.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: Grandiose stuff. I remain unconvinced that Heisenberg (clever fellow, I'm told) has any idea of what he is talking about.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Maxwell introduced real fields, which transferred forces from point to point [Heisenberg]
     Full Idea: In the theory of fields of force one came back to the older idea, that action is transferred from one point to a neighbouring point. ...With Maxwell the fields of force seemed to have acquired the same degree of reality as the body's of Newton's theory.
     From: Werner Heisenberg (Physics and Philosophy [1958], 06)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Radiation interference needs waves, but radiation photoelectric effects needs particles [Heisenberg]
     Full Idea: How could it be that the same radiation that produces interference patterns, and therefore must consist of waves, also produces the photoelectric effect, and therefore must consist of moving particles.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
An atom's stability after collisions needs explaining (which Newton's mechanics can't do) [Heisenberg]
     Full Idea: The first new model of the atom could not explain the most characteristic features of the atom, its enormous stability. No planetary system following the laws of Newton's mechanics would ever go back to its original configuration after a collision.
     From: Werner Heisenberg (Physics and Philosophy [1958], 02)
Position is complementary to velocity or momentum, so the whole system is indeterminate [Heisenberg]
     Full Idea: The knowledge of the position of a particle is complementary to the knowledge of its velocity or momentum. If we know one with high accuracy we cannot know the other with high accuracy; still we must know both for determining the behaviour of the system.
     From: Werner Heisenberg (Physics and Philosophy [1958], 03)
     A reaction: This is the famous Uncertainty Principle, expressed in plain language by the man himself. At this point we lost our grip on the prospects of determining the behaviour of natural systems.
It was formerly assumed that electromagnetic waves could not be a reality in themselves [Heisenberg]
     Full Idea: The idea that electromagnetic waves could be a reality in themselves, independent of any bodies, did at that time not occur to the physicists.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
     A reaction: 'At that time' is when they thought the waves must travel through something, called the 'ether'.
27. Natural Reality / C. Space / 4. Substantival Space
So-called 'empty' space is the carrier of geometry and kinematics [Heisenberg]
     Full Idea: From our modern point of view we would say that the empty space between the atoms was not nothing; it was the carrier of geometry and kinematics.
     From: Werner Heisenberg (Physics and Philosophy [1958], 04)
     A reaction: I'm not sure what the 'carrier of geometry and kinematics' means, but it is interesting that he doesn't mention 'fields' (unless they carry the kinematics?)
27. Natural Reality / D. Time / 3. Parts of Time / e. Present moment
In relativity the length of the 'present moment' is relative to distance from the observer [Heisenberg]
     Full Idea: In classical theory we assume past and future are separated by an infinitely short time interval called the present moment. In relativity it is different: future and past are separated by a finite time interval dependent on the distance from the observer.
     From: Werner Heisenberg (Physics and Philosophy [1958], 07)
     A reaction: Not sure I understand this, but it is a revelation to realise that not only is time made relative to observers, but the length of the 'present moment' also becomes relative. The infinitesimal present moment has always bothered me.