Combining Philosophers

All the ideas for Ryan Wasserman, Edwin D. Mares and Jos L. Zalabardo

unexpand these ideas     |    start again     |     specify just one area for these philosophers


50 ideas

1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
After 1903, Husserl avoids metaphysical commitments [Mares]
     Full Idea: In Husserl's philosophy after 1903, he is unwilling to commit himself to any specific metaphysical views.
     From: Edwin D. Mares (A Priori [2011], 08.2)
2. Reason / A. Nature of Reason / 9. Limits of Reason
Inconsistency doesn't prevent us reasoning about some system [Mares]
     Full Idea: We are able to reason about inconsistent beliefs, stories, and theories in useful and important ways
     From: Edwin D. Mares (Negation [2014], 1)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionism as natural deduction has no rule for negation [Mares]
     Full Idea: In intuitionist logic each connective has one introduction and one elimination rule attached to it, but in the classical system we have to add an extra rule for negation.
     From: Edwin D. Mares (Negation [2014], 5.5)
     A reaction: How very intriguing. Mares says there are other ways to achieve classical logic, but they all seem rather cumbersome.
Intuitionist logic looks best as natural deduction [Mares]
     Full Idea: Intuitionist logic appears most attractive in the form of a natural deduction system.
     From: Edwin D. Mares (Negation [2014], 5.5)
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic is useful for a theory of presupposition [Mares]
     Full Idea: One reason for wanting a three-valued logic is to act as a basis of a theory of presupposition.
     From: Edwin D. Mares (Negation [2014], 3.1)
     A reaction: [He cites Strawson 1950] The point is that you can get a result when the presupposition does not apply, as in talk of the 'present King of France'.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Sets can be defined by 'enumeration', or by 'abstraction' (based on a property) [Zalabardo]
     Full Idea: We can define a set by 'enumeration' (by listing the items, within curly brackets), or by 'abstraction' (by specifying the elements as instances of a property), pretending that they form a determinate totality. The latter is written {x | x is P}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'Cartesian Product' of two sets relates them by pairing every element with every element [Zalabardo]
     Full Idea: The 'Cartesian Product' of two sets, written A x B, is the relation which pairs every element of A with every element of B. So A x B = { | x ∈ A and y ∈ B}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
A 'partial ordering' is reflexive, antisymmetric and transitive [Zalabardo]
     Full Idea: A binary relation in a set is a 'partial ordering' just in case it is reflexive, antisymmetric and transitive.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Determinacy: an object is either in a set, or it isn't [Zalabardo]
     Full Idea: Principle of Determinacy: For every object a and every set S, either a is an element of S or a is not an element of S.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: Determinate totals of objects always make a set [Zalabardo]
     Full Idea: Principle of Specification: Whenever we can specify a determinate totality of objects, we shall say that there is a set whose elements are precisely the objects that we have specified.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
     A reaction: Compare the Axiom of Specification. Zalabardo says we may wish to consider sets of which we cannot specify the members.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
A first-order 'sentence' is a formula with no free variables [Zalabardo]
     Full Idea: A formula of a first-order language is a 'sentence' just in case it has no free variables.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.2)
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Material implication (and classical logic) considers nothing but truth values for implications [Mares]
     Full Idea: The problem with material implication, and classical logic more generally, is that it considers only the truth value of formulas in deciding whether to make an implication stand between them. It ignores everything else.
     From: Edwin D. Mares (Negation [2014], 7.1)
     A reaction: The obvious problem case is conditionals, and relevance is an obvious extra principle that comes to mind.
In classical logic the connectives can be related elegantly, as in De Morgan's laws [Mares]
     Full Idea: Among the virtues of classical logic is the fact that the connectives are related to one another in elegant ways that often involved negation. For example, De Morgan's Laws, which involve negation, disjunction and conjunction.
     From: Edwin D. Mares (Negation [2014], 2.2)
     A reaction: Mares says these enable us to take disjunction or conjunction as primitive, and then define one in terms of the other, using negation as the tool.
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ |= φ if φ is true when all of Γ is true, for all structures and interpretations [Zalabardo]
     Full Idea: A formula is the 'logical consequence' of a set of formulas (Γ |= φ) if for every structure in the language and every variable interpretation of the structure, if all the formulas within the set are true and the formula itself is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
Γ |= φ for sentences if φ is true when all of Γ is true [Zalabardo]
     Full Idea: A propositional logic sentence is a 'logical consequence' of a set of sentences (written Γ |= φ) if for every admissible truth-assignment all the sentences in the set Γ are true, then φ is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: The definition is similar for predicate logic.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Excluded middle standardly implies bivalence; attacks use non-contradiction, De M 3, or double negation [Mares]
     Full Idea: On its standard reading, excluded middle tells us that bivalence holds. To reject excluded middle, we must reject either non-contradiction, or ¬(A∧B) ↔ (¬A∨¬B) [De Morgan 3], or the principle of double negation. All have been tried.
     From: Edwin D. Mares (Negation [2014], 2.2)
Standard disjunction and negation force us to accept the principle of bivalence [Mares]
     Full Idea: If we treat disjunction in the standard way and take the negation of a statement A to mean that A is false, accepting excluded middle forces us also to accept the principle of bivalence, which is the dictum that every statement is either true or false.
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: Mates's point is to show that passively taking the normal account of negation for granted has important implications.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The connectives are studied either through model theory or through proof theory [Mares]
     Full Idea: In studying the logical connectives, philosophers of logic typically adopt the perspective of either model theory (givng truth conditions of various parts of the language), or of proof theory (where use in a proof system gives the connective's meaning).
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: [compressed] The commonest proof theory is natural deduction, giving rules for introduction and elimination. Mates suggests moving between the two views is illuminating.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
Propositional logic just needs ¬, and one of ∧, ∨ and → [Zalabardo]
     Full Idea: In propositional logic, any set containing ¬ and at least one of ∧, ∨ and → is expressively complete.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.8)
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Many-valued logics lack a natural deduction system [Mares]
     Full Idea: Many-valued logics do not have reasonable natural deduction systems.
     From: Edwin D. Mares (Negation [2014], 1)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
The semantics shows how truth values depend on instantiations of properties and relations [Zalabardo]
     Full Idea: The semantic pattern of a first-order language is the ways in which truth values depend on which individuals instantiate the properties and relations which figure in them. ..So we pair a truth value with each combination of individuals, sets etc.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.3)
     A reaction: So truth reduces to a combination of 'instantiations', which is rather like 'satisfaction'.
We can do semantics by looking at given propositions, or by building new ones [Zalabardo]
     Full Idea: We can look at semantics from the point of view of how truth values are determined by instantiations of properties and relations, or by asking how we can build, using the resources of the language, a proposition corresponding to a given semantic pattern.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
     A reaction: The second version of semantics is model theory.
Situation semantics for logics: not possible worlds, but information in situations [Mares]
     Full Idea: Situation semantics for logics consider not what is true in worlds, but what information is contained in situations.
     From: Edwin D. Mares (Negation [2014], 6.2)
     A reaction: Since many theoretical physicists seem to think that 'information' might be the most basic concept of a natural ontology, this proposal is obviously rather appealing. Barwise and Perry are the authors of the theory.
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
We make a truth assignment to T and F, which may be true and false, but merely differ from one another [Zalabardo]
     Full Idea: A truth assignment is a function from propositions to the set {T,F}. We will think of T and F as the truth values true and false, but for our purposes all we need to assume about the identity of these objects is that they are different from each other.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: Note that T and F are 'objects'. This remark is important in understanding modern logical semantics. T and F can be equated to 1 and 0 in the language of a computer. They just mean as much as you want them to mean.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Logically true' (|= φ) is true for every truth-assignment [Zalabardo]
     Full Idea: A propositional logic sentence is 'logically true', written |= φ, if it is true for every admissible truth-assignment.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
Logically true sentences are true in all structures [Zalabardo]
     Full Idea: In first-order languages, logically true sentences are true in all structures.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence-set is 'satisfiable' if at least one truth-assignment makes them all true [Zalabardo]
     Full Idea: A propositional logic set of sentences Γ is 'satisfiable' if there is at least one admissible truth-assignment that makes all of its sentences true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
Some formulas are 'satisfiable' if there is a structure and interpretation that makes them true [Zalabardo]
     Full Idea: A set of formulas of a first-order language is 'satisfiable' if there is a structure and a variable interpretation in that structure such that all the formulas of the set are true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure models a sentence if it is true in the model, and a set of sentences if they are all true in the model [Zalabardo]
     Full Idea: A structure is a model of a sentence if the sentence is true in the model; a structure is a model of a set of sentences if they are all true in the structure.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is semantic, but non-contradiction is syntactic [Mares]
     Full Idea: The difference between the principle of consistency and the principle of non-contradiction is that the former must be stated in a semantic metalanguage, whereas the latter is a thesis of logical systems.
     From: Edwin D. Mares (Negation [2014], 2.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The truth of the axioms doesn't matter for pure mathematics, but it does for applied [Mares]
     Full Idea: The epistemological burden of showing that the axioms are true is removed if we are only studying pure mathematics. If, however, we want to look at applied mathematics, then this burden returns.
     From: Edwin D. Mares (A Priori [2011], 11.4)
     A reaction: One of those really simple ideas that hits the spot. Nice. The most advanced applied mathematics must rest on counting and measuring.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
If a set is defined by induction, then proof by induction can be applied to it [Zalabardo]
     Full Idea: Defining a set by induction enables us to use the method of proof by induction to establish that all the elements of the set have a certain property.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.3)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematics is relations between properties we abstract from experience [Mares]
     Full Idea: Aristotelians treat mathematical facts as relations between properties. These properties, moreover, are abstracted from our experience of things. ...This view finds a natural companion in structuralism.
     From: Edwin D. Mares (A Priori [2011], 11.7)
     A reaction: This is the view of mathematics that I personally favour. The view that we abstract 'five' from a group of five pebbles is too simplistic, but this is the right general approach.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
For intuitionists there are not numbers and sets, but processes of counting and collecting [Mares]
     Full Idea: For the intuitionist, talk of mathematical objects is rather misleading. For them, there really isn't anything that we should call the natural numbers, but instead there is counting. What intuitionists study are processes, such as counting and collecting.
     From: Edwin D. Mares (Negation [2014], 5.1)
     A reaction: That is the first time I have seen mathematical intuitionism described in a way that made it seem attractive. One might compare it to a metaphysics based on processes. Apparently intuitionists struggle with infinite sets and real numbers.
9. Objects / C. Structure of Objects / 6. Constitution of an Object
Constitution is identity (being in the same place), or it isn't (having different possibilities) [Wasserman]
     Full Idea: Some insist that constitution is identity, on the grounds that distinct material objects cannot occupy the same place at the same time. Others argue that constitution is not identity, since the statue and its material differ in important respects.
     From: Ryan Wasserman (Material Constitution [2009], Intro)
     A reaction: The 'important respects' seem to concern possibilities rather than actualities, which is suspicious. It is misleading to think we are dealing with two things and their relation here. Objects must have constitutions; constitutions make objects.
Constitution is not identity, because it is an asymmetric dependence relation [Wasserman]
     Full Idea: For those for whom 'constitution is not identity' (the 'constitution view'), constitution is said to be an asymmetric relation, and also a dependence relation (unlike identity).
     From: Ryan Wasserman (Material Constitution [2009], 2)
     A reaction: It seems obvious that constitution is not identity, because there is more to a thing's identity than its mere constitution. But this idea makes it sound as if constitution has nothing to do with identity (chalk and cheese), and that can't be right.
There are three main objections to seeing constitution as different from identity [Wasserman]
     Full Idea: The three most common objections to the constitution view are the Impenetrability Objection (two things in one place?), the Extensionality Objection (mereology says wholes are just their parts), and the Grounding Objection (their ground is the same).
     From: Ryan Wasserman (Material Constitution [2009], 2)
     A reaction: [summary] He adds a fourth, that if two things can be in one place, why stop at two? [Among defenders of the Constitution View he lists Baker, Fine, Forbes, Koslicki, Kripke, Lowe, Oderberg, N.Salmon, Shoemaker, Simons and Yablo.]
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
The weight of a wall is not the weight of its parts, since that would involve double-counting [Wasserman]
     Full Idea: We do not calculate the weight of something by summing the weights of all its parts - weigh bricks and the molecules of a wall and you will get the wrong result, since you have weighed some parts more than once.
     From: Ryan Wasserman (Material Constitution [2009], 2)
     A reaction: In fact the complete inventory of the parts of a thing is irrelevant to almost anything we would like to know about the thing. The parts must be counted at some 'level' of division into parts. An element can belong to many different sets.
9. Objects / F. Identity among Objects / 3. Relative Identity
Relative identity may reject transitivity, but that suggests that it isn't about 'identity' [Wasserman]
     Full Idea: If the relative identity theorist denies transitivity (to deal with the Ship of Theseus, for example), this would make us suspect that relativised identity relations are not identity relations, since transitivity seems central to identity.
     From: Ryan Wasserman (Material Constitution [2009], 6)
     A reaction: The problem here, I think, focuses on the meaning of the word 'same'. One change of plank leaves you with the same ship, but that is not transitive. If 'identical' is too pure to give the meaning of 'the same' it's not much use in discussing the world.
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Light in straight lines is contingent a priori; stipulated as straight, because they happen to be so [Mares]
     Full Idea: It seems natural to claim that light rays moving in straight lines is contingent but a priori. Scientists stipulate that they are the standard by which we measure straightness, but their appropriateness for this task is a contingent feature of the world.
     From: Edwin D. Mares (A Priori [2011], 02.9)
     A reaction: This resembles the metre rule in Paris. It is contingent that something is a certain way, so we make being that way a conventional truth, which can therefore be known via the convention, rather than via the contingent fact.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Aristotelians dislike the idea of a priori judgements from pure reason [Mares]
     Full Idea: Aristotelians tend to eschew talk about a special faculty of pure reason that is responsible for all of our a priori judgements.
     From: Edwin D. Mares (A Priori [2011], 08.9)
     A reaction: He is invoking Carrie Jenkins's idea that the a priori is knowledge of relations between concepts which have been derived from experience. Nice idea. We thus have an empirical a priori, integrated into the natural world. Abstraction must be involved.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Empiricists say rationalists mistake imaginative powers for modal insights [Mares]
     Full Idea: Empiricist critiques of rationalism often accuse rationalists of confusing the limits of their imaginations with real insight into what is necessarily true.
     From: Edwin D. Mares (A Priori [2011], 03.01)
     A reaction: See ideas on 'Conceivable as possible' for more on this. You shouldn't just claim to 'see' that something is true, but be willing to offer some sort of reason, truthmaker or grounding. Without that, you may be right, but you are on weak ground.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
The most popular view is that coherent beliefs explain one another [Mares]
     Full Idea: In what is perhaps the most popular version of coherentism, a system of beliefs is a set of beliefs that explain one another.
     From: Edwin D. Mares (A Priori [2011], 01.5)
     A reaction: These seems too simple. My first response would be that explanations are what result from coherence sets of beliefs. I may have beliefs that explain nothing, but at least have the virtue of being coherent.
14. Science / B. Scientific Theories / 3. Instrumentalism
Operationalism defines concepts by our ways of measuring them [Mares]
     Full Idea: The central claim of Percy Bridgman's theory of operational definitions (1920s), is that definitions of certain scientific concepts are given by the ways that we have to measure them. For example, a straight line is 'the path of a light ray'.
     From: Edwin D. Mares (A Priori [2011], 02.9)
     A reaction: It is often observed that this captures the spirit of Special Relativity.
18. Thought / D. Concepts / 2. Origin of Concepts / b. Empirical concepts
Aristotelian justification uses concepts abstracted from experience [Mares]
     Full Idea: Aristotelian justification is the process of reasoning using concepts that are abstracted from experience (rather than, say, concepts that are innate or those that we associate with the meanings of words).
     From: Edwin D. Mares (A Priori [2011], 08.1)
     A reaction: See Carrie Jenkins for a full theory along these lines (though she doesn't mention Aristotle). This is definitely my preferred view of concepts.
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The essence of a concept is either its definition or its conceptual relations? [Mares]
     Full Idea: In the 'classical theory' a concept includes in it those concepts that define it. ...In the 'theory theory' view the content of a concept is determined by its relationship to other concepts.
     From: Edwin D. Mares (A Priori [2011], 03.10)
     A reaction: Neither of these seem to give an intrinsic account of a concept, or any account of how the whole business gets off the ground.
19. Language / C. Assigning Meanings / 2. Semantics
In 'situation semantics' our main concepts are abstracted from situations [Mares]
     Full Idea: In 'situation semantics' individuals, properties, facts, and events are treated as abstractions from situations.
     From: Edwin D. Mares (Negation [2014], 6.1)
     A reaction: [Barwise and Perry 1983 are cited] Since I take the process of abstraction to be basic to thought, I am delighted to learn that someone has developed a formal theory based on it. I am immediately sympathetic to situation semantics.
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics has a nice compositional account of modal statements [Mares]
     Full Idea: Possible worlds semantics is appealing because it gives a compositional analysis of the truth conditions of statements about necessity and possibility.
     From: Edwin D. Mares (A Priori [2011], 02.2)
     A reaction: Not sure I get this. Is the meaning composed by the gradual addition of worlds? If not, how is meaning composed in the normal way, from component words and phrases?
19. Language / D. Propositions / 3. Concrete Propositions
Unstructured propositions are sets of possible worlds; structured ones have components [Mares]
     Full Idea: An unstructured proposition is a set of possible worlds. ....Structured propositions contain entities that correspond to various parts of the sentences or thoughts that express them.
     From: Edwin D. Mares (A Priori [2011], 02.3)
     A reaction: I am definitely in favour of structured propositions. It strikes me as so obvious as to be not worth discussion - so I am obviously missing something here. Mares says structured propositions are 'more convenient'.
27. Natural Reality / C. Space / 3. Points in Space
Maybe space has points, but processes always need regions with a size [Mares]
     Full Idea: One theory is that space is made up of dimensionless points, but physical processes cannot take place in regions of less than a certain size.
     From: Edwin D. Mares (A Priori [2011], 06.7)
     A reaction: Thinkers in sympathy with verificationism presumably won't like this, and may prefer Feynman's view.