Combining Philosophers

All the ideas for Samuel Scheffler, Penelope Maddy and Gideon Rosen

unexpand these ideas     |    start again     |     specify just one area for these philosophers


87 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Philosophers are often too fussy about words, dismissing perfectly useful ordinary terms [Rosen]
     Full Idea: Philosophers can sometimes be too fussy about the words they use, dismissing as 'unintelligible' or 'obscure' certain forms of language that are perfectly meaningful by ordinary standards, and which may be of some real use.
     From: Gideon Rosen (Metaphysical Dependence [2010], 01)
     A reaction: Analytic philosophers are inclined to drop terms they can't formalise, but there is more to every concept than its formalisation (Frege's 'direction' for example). I want to rescue 'abstraction' and 'essence'. Rosen says distinguish, don't formalise.
2. Reason / D. Definition / 1. Definitions
Figuring in the definition of a thing doesn't make it a part of that thing [Rosen]
     Full Idea: From the simple fact that '1' figures in the definition of '2', it does not follow that 1 is part of 2.
     From: Gideon Rosen (Metaphysical Dependence [2010], 10)
     A reaction: He observes that quite independent things can be mentioned on the two sides of a definition, with no parthood relation. You begin to wonder what a definition really is. A causal chain?
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
     Full Idea: Cohen's method of 'forcing' produces a new model of ZFC from an old model by appending a carefully chosen 'generic' set.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
     Full Idea: A possible axiom is the Large Cardinal Axiom, which asserts that there are more and more stages in the cumulative hierarchy. Infinity can be seen as the first of these stages, and Replacement pushes further in this direction.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
New axioms are being sought, to determine the size of the continuum [Maddy]
     Full Idea: In current set theory, the search is on for new axioms to determine the size of the continuum.
     From: Penelope Maddy (Believing the Axioms I [1988], §0)
     A reaction: This sounds the wrong way round. Presumably we seek axioms that fix everything else about set theory, and then check to see what continuum results. Otherwise we could just pick our continuum, by picking our axioms.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
     Full Idea: Most writers agree that if any sense can be made of the distinction between analytic and synthetic, then the Axiom of Extensionality should be counted as analytic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [Boolos is the source of the idea] In other words Extensionality is not worth discussing, because it simply tells you what the world 'set' means, and there is no room for discussion about that. The set/class called 'humans' varies in size.
Extensional sets are clearer, simpler, unique and expressive [Maddy]
     Full Idea: The extensional view of sets is preferable because it is simpler, clearer, and more convenient, because it individuates uniquely, and because it can simulate intensional notions when the need arises.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [She cites Fraenkel, Bar-Hillet and Levy for this] The difficulty seems to be whether the extensional notion captures our ordinary intuitive notion of what constitutes a group of things, since that needs flexible size and some sort of unity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing (with Extensionality) guarantees an infinity of sets, just from a single element [Rosen]
     Full Idea: In conjunction with Extensionality, Pairing entails that given a single non-set, infinitely many sets exist.
     From: Gideon Rosen (The Limits of Contingency [2006], 04)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
     Full Idea: The Axiom of Infinity is a simple statement of Cantor's great breakthrough. His bold hypothesis that a collection of elements that had lurked in the background of mathematics could be infinite launched modern mathematics.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: It also embodies one of those many points where mathematics seems to depart from common sense - but then most subjects depart from common sense when they get more sophisticated. Look what happened to art.
Infinite sets are essential for giving an account of the real numbers [Maddy]
     Full Idea: If one is interested in analysis then infinite sets are indispensable since even the notion of a real number cannot be developed by means of finite sets alone.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: [Maddy is citing Fraenkel, Bar-Hillel and Levy] So Cantor's great breakthrough (Idea 13021) actually follows from the earlier acceptance of the real numbers, so that's where the departure from common sense started.
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
     Full Idea: The axiom of infinity: that there are infinite sets is to claim that completed infinite collections can be treated mathematically. In its standard contemporary form, the axioms assert the existence of the set of all finite ordinals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
     Full Idea: The Power Set Axiom is indispensable for a set-theoretic account of the continuum, ...and in so far as those attempts are successful, then the power-set principle gains some confirmatory support.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.6)
     A reaction: The continuum is, of course, notoriously problematic. Have we created an extra problem in our attempts at solving the first one?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
     Full Idea: In the presence of other axioms, the Axiom of Foundation is equivalent to the claim that every set is a member of some Vα.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
     Full Idea: Jordain made consistent and ill-starred efforts to prove the Axiom of Choice.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This would appear to be the fate of most axioms. You would presumably have to use a different system from the one you are engaged with to achieve your proof.
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
     Full Idea: Resistance to the Axiom of Choice centred on opposition between existence and construction. Modern set theory thrives on a realistic approach which says the choice set exists, regardless of whether it can be defined, constructed, or given by a rule.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This seems to be a key case for the ontology that lies at the heart of theory. Choice seems to be an invaluable tool for proofs, so it won't go away, so admit it to the ontology. Hm. So the tools of thought have existence?
A large array of theorems depend on the Axiom of Choice [Maddy]
     Full Idea: Many theorems depend on the Axiom of Choice, including that a countable union of sets is countable, and results in analysis, topology, abstract algebra and mathematical logic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: The modern attitude seems to be to admit anything if it leads to interesting results. It makes you wonder about the modern approach of using mathematics and logic as the cutting edges of ontological thinking.
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
     Full Idea: The Axiom of Reducibility states that every propositional function is extensionally equivalent to some predicative proposition function.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
     Full Idea: The Iterative Conception (Zermelo 1930) says everything appears at some stage. Given two objects a and b, let A and B be the stages at which they first appear. Suppose B is after A. Then the pair set of a and b appears at the immediate stage after B.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: Presumably this all happens in 'logical time' (a nice phrase I have just invented!). I suppose we might say that the existence of the paired set is 'forced' by the preceding sets. No transcendental inferences in this story?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
     Full Idea: The 'limitation of size' is a vague intuition, based on the idea that being too large may generate the paradoxes.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: This is an intriguing idea to be found right at the centre of what is supposed to be an incredibly rigorous system.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
     Full Idea: The master science can be thought of as the theory of sets with the entire range of physical objects as ur-elements.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: This sounds like Quine's view, since we have to add sets to our naturalistic ontology of objects. It seems to involve unrestricted mereology to create normal objects.
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
     Full Idea: Maddy dispenses with pure sets, by sketching a strong set theory in which everything is either a physical object or a set of sets of ...physical objects. Eventually a physiological story of perception will extend to sets of physical objects.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: This doesn't seem to find many supporters, but if we accept the perception of resemblances as innate (as in Hume and Quine), it is isn't adding much to see that we intrinsically see things in groups.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics is more plausible for plural logic than for second-order logic [Maddy]
     Full Idea: Henkin-style semantics seem to me more plausible for plural logic than for second-order logic.
     From: Penelope Maddy (Second Philosophy [2007], III.8 n1)
     A reaction: Henkin-style semantics are presented by Shapiro as the standard semantics for second-order logic.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
     Full Idea: A 'propositional function' is generated when one of the terms of the proposition is replaced by a variable, as in 'x is wise' or 'Socrates'.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: This implies that you can only have a propositional function if it is derived from a complete proposition. Note that the variable can be in either subject or in predicate position. It extends Frege's account of a concept as 'x is F'.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Explanations fail to be monotonic [Rosen]
     Full Idea: The failure of monotonicity is a general feature of explanatory relations.
     From: Gideon Rosen (Metaphysical Dependence [2010], 05)
     A reaction: In other words, explanations can always shift in the light of new evidence. In principle this is right, but some explanations just seem permanent, like plate-tectonics as explanation for earthquakes.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Completed infinities resulted from giving foundations to calculus [Maddy]
     Full Idea: The line of development that finally led to a coherent foundation for the calculus also led to the explicit introduction of completed infinities: each real number is identified with an infinite collection of rationals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
     A reaction: Effectively, completed infinities just are the real numbers.
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
     Full Idea: Both Cantor's real number (Cauchy sequences of rationals) and Dedekind's cuts involved regarding infinite items (sequences or sets) as completed and subject to further manipulation, bringing the completed infinite into mathematics unambiguously.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1 n39)
     A reaction: So it is the arrival of the real numbers which is the culprit for lumbering us with weird completed infinites, which can then be the subject of addition, multiplication and exponentiation. Maybe this was a silly mistake?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
     Full Idea: The stunning discovery that infinity comes in different degrees led to the theory of infinite cardinal numbers, the heart of contemporary set theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: It occurs to me that these huge cardinals only exist in set theory. If you took away that prop, they would vanish in a puff.
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
     Full Idea: By the mid 1890s Cantor was aware that there could be no set of all sets, as its cardinal number would have to be the largest cardinal number, while his own theorem shows that for any cardinal there is a larger.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: There is always a larger cardinal because of the power set axiom. Some people regard that with suspicion.
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
     Full Idea: An 'inaccessible' cardinal is one that cannot be reached by taking unions of small collections of smaller sets or by taking power sets.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
     A reaction: They were introduced by Hausdorff in 1908.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
     Full Idea: Even the fundamental theorems about limits could not [at first] be proved because the reals themselves were not well understood.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This refers to the period of about 1850 (Weierstrass) to 1880 (Dedekind and Cantor).
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
     Full Idea: I attach no decisive importance even to bringing in the extension of the concepts at all.
     From: Penelope Maddy (Naturalism in Mathematics [1997], §107)
     A reaction: He almost seems to equate the concept with its extension, but that seems to raise all sorts of questions, about indeterminate and fluctuating extensions.
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
     Full Idea: In the ZFC cumulative hierarchy, Frege's candidates for numbers do not exist. For example, new three-element sets are formed at every stage, so there is no stage at which the set of all three-element sets could he formed.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Ah. This is a very important fact indeed if you are trying to understand contemporary discussions in philosophy of mathematics.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
     Full Idea: To solve the Julius Caesar problem, Frege requires explicit definitions of the numbers, and he proposes his well-known solution: the number of Fs = the extension of the concept 'equinumerous with F' (based on one-one correspondence).
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Why do there have to be Fs before there can be the corresponding number? If there were no F for 523, would that mean that '523' didn't exist (even if 522 and 524 did exist)?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
     Full Idea: If you wonder why multiplication is commutative, you could prove it from the Peano postulates, but the proof offers little towards an answer. In set theory Cartesian products match 1-1, and n.m dots when turned on its side has m.n dots, which explains it.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: 'Turning on its side' sounds more fundamental than formal set theory. I'm a fan of explanation as taking you to the heart of the problem. I suspect the world, rather than set theory, explains the commutativity.
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
     Full Idea: The standard account of the relationship between numbers and sets is that numbers simply are certain sets. This has the advantage of ontological economy, and allows numbers to be brought within the epistemology of sets.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Maddy votes for numbers being properties of sets, rather than the sets themselves. See Yourgrau's critique.
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
     Full Idea: I propose that ...numbers are properties of sets, analogous, for example, to lengths, which are properties of physical objects.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Are lengths properties of physical objects? A hole in the ground can have a length. A gap can have a length. Pure space seems to contain lengths. A set seems much more abstract than its members.
A natural number is a property of sets [Maddy, by Oliver]
     Full Idea: Maddy takes a natural number to be a certain property of sui generis sets, the property of having a certain number of members.
     From: report of Penelope Maddy (Realism in Mathematics [1990], 3 §2) by Alex Oliver - The Metaphysics of Properties
     A reaction: [I believe Maddy has shifted since then] Presumably this will make room for zero and infinities as natural numbers. Personally I want my natural numbers to count things.
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
     Full Idea: The set theory axioms developed in producing foundations for mathematics also have strong consequences for existing fields, and produce a theory that is immensely fruitful in its own right.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: [compressed] Second of Maddy's three benefits of set theory. This benefit is more questionable than the first, because the axioms may be invented because of their nice fruit, instead of their accurate account of foundations.
Unified set theory gives a final court of appeal for mathematics [Maddy]
     Full Idea: The single unified area of set theory provides a court of final appeal for questions of mathematical existence and proof.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Maddy's third benefit of set theory. 'Existence' means being modellable in sets, and 'proof' means being derivable from the axioms. The slightly ad hoc character of the axioms makes this a weaker defence.
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
     Full Idea: Set theoretic foundations bring all mathematical objects and structures into one arena, allowing relations and interactions between them to be clearly displayed and investigated.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: The first of three benefits of set theory which Maddy lists. The advantages of the one arena seem to be indisputable.
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
     Full Idea: The identification of geometric points with real numbers was among the first and most dramatic examples of the power of set theoretic foundations.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Hence the clear definition of the reals by Dedekind and Cantor was the real trigger for launching set theory.
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
     Full Idea: The structure of a geometric line by rational points left gaps, which were inconsistent with a continuous line. Set theory provided an ordering that contained no gaps. These reals are constructed from rationals, which come from integers and naturals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This completes the reduction of geometry to arithmetic and algebra, which was launch 250 years earlier by Descartes.
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
     Full Idea: Our much loved mathematical knowledge rests on two supports: inexorable deductive logic (the stuff of proof), and the set theoretic axioms.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I Intro)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
     Full Idea: I am not suggesting a reduction of number theory to set theory ...There are only sets with number properties; number theory is part of the theory of finite sets.
     From: Penelope Maddy (Sets and Numbers [1981], V)
Sets exist where their elements are, but numbers are more like universals [Maddy]
     Full Idea: A set of things is located where the aggregate of those things is located, ...but a number is simultaneously located at many different places (10 in my hand, and a baseball team) ...so numbers seem more like universals than particulars.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: My gut feeling is that Maddy's master idea (of naturalising sets by building them from ur-elements of natural objects) won't work. Sets can work fine in total abstraction from nature.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
     Full Idea: The popular challenges to platonism in philosophy of mathematics are epistemological (how are we able to interact with these objects in appropriate ways) and ontological (if numbers are sets, which sets are they).
     From: Penelope Maddy (Sets and Numbers [1981], I)
     A reaction: These objections refer to Benacerraf's two famous papers - 1965 for the ontology, and 1973 for the epistemology. Though he relied too much on causal accounts of knowledge in 1973, I'm with him all the way.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
     Full Idea: Maddy says that intuition alone does not support very much mathematics; more importantly, a naturalist cannot accept intuition at face value, but must ask why we are justified in relying on intuition.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: It depends what you mean by 'intuition', but I identify with her second objection, that every faculty must ultimately be subject to criticism, which seems to point to a fairly rationalist view of things.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
     Full Idea: Maddy proposes that we can know (some) mind-independent mathematical truths through knowing about sets, and that we can obtain knowledge of sets through experience.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Carrie Jenkins - Grounding Concepts 6.5
     A reaction: Maddy has since backed off from this, and now tries to merely defend 'objectivity' about sets (2011:114). My amateurish view is that she is overrating the importance of sets, which merely model mathematics. Look at category theory.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
     Full Idea: Crudely, the scientist posits only those entities without which she cannot account for observations, while the set theorist posits as many entities as she can, short of inconsistency.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.5)
Maybe applications of continuum mathematics are all idealisations [Maddy]
     Full Idea: It could turn out that all applications of continuum mathematics in natural sciences are actually instances of idealisation.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
     Full Idea: Number words are not like normal adjectives. For example, number words don't occur in 'is (are)...' contexts except artificially, and they must appear before all other adjectives, and so on.
     From: Penelope Maddy (Sets and Numbers [1981], IV)
     A reaction: [She is citing Benacerraf's arguments]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
     Full Idea: Recent commentators have noted that Frege's versions of the basic propositions of arithmetic can be derived from Hume's Principle alone, that the fatal Law V is only needed to derive Hume's Principle itself from the definition of number.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Crispin Wright is the famous exponent of this modern view. Apparently Charles Parsons (1965) first floated the idea.
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Things could be true 'in virtue of' others as relations between truths, or between truths and items [Rosen]
     Full Idea: Our relation of 'in virtue of' is among facts or truths, whereas Fine's relation (if it is a relation at all) is a relation between a given truth and items whose natures ground that truth.
     From: Gideon Rosen (Metaphysical Dependence [2010], 07 n10)
     A reaction: This disagreement between two key players in the current debate on grounding looks rather significant. I think I favour Fine's view, as it seems more naturalistic, and less likely to succumb to conventionalism.
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
Facts are structures of worldly items, rather like sentences, individuated by their ingredients [Rosen]
     Full Idea: Facts are structured entities built up from worldly items rather as sentences are built up from words. They might be identified with Russellian propositions. They are individuated by their constituents and composition, and are fine-grained.
     From: Gideon Rosen (Metaphysical Dependence [2010], 04)
     A reaction: I'm a little cautious about the emphasis on being sentence-like. We have Russell's continual warnings against imposing subject-predicate structure on things. I think we should happily talk about 'facts' in metaphysics.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
     Full Idea: The case of atoms makes it clear that the indispensable appearance of an entity in our best scientific theory is not generally enough to convince scientists that it is real.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: She refers to the period between Dalton and Einstein, when theories were full of atoms, but there was strong reluctance to actually say that they existed, until the direct evidence was incontrovertable. Nice point.
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is one that depends on a thing and its parts, and not on its relations [Rosen]
     Full Idea: One intuitive gloss on 'intrinsic' property is that a property is intrinsic iff whether or not a thing has it depends entirely on how things stand with it and its parts, and not on its relation to some distinct thing.
     From: Gideon Rosen (Metaphysical Dependence [2010], 02)
     A reaction: He offers this as a useful reward for reviving 'depends on' in metaphysical talk. The problem here would be to explain the 'thing' and its 'parts' without mentioning the target property. The thing certainly can't be a bundle of tropes.
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
How we refer to abstractions is much less clear than how we refer to other things [Rosen]
     Full Idea: It is unclear how we manage to refer determinately to abstract entities in a sense in which it is not unclear how we manage to refer determinately to other things.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Ex')
     A reaction: This is where problems of abstraction overlap with problems about reference in language. Can we have a 'baptism' account of each abstraction (even very large numbers)? Will descriptions do it? Do abstractions collapse into particulars when we refer?
9. Objects / A. Existence of Objects / 4. Impossible objects
A Meinongian principle might say that there is an object for any modest class of properties [Rosen]
     Full Idea: Meinongian abstraction principles say that for any (suitably restricted) class of properties, there exists an abstract entity (arbitrary object, subsistent entity) that possesses just those properties.
     From: Gideon Rosen (The Limits of Contingency [2006], 04)
     A reaction: This is 'Meinongian' because there will be an object which is circular and square. The nub of the idea presumably resides in what is meant by 'restricted'. An object possessing every conceivable property is, I guess, a step too far.
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical necessity is absolute and universal; metaphysical possibility is very tolerant [Rosen]
     Full Idea: If P is metaphysically necessary, then it is absolutely necessary, and necessary in every real (non-epistemic) sense; and if P is possible in any sense, then it's possible in the metaphysical sense.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: Rosen's shot at defining metaphysical necessity and possibility, and it looks pretty good to me. In my terms (drawing from Kit Fine) it is what is necessitated or permitted 'by everything'. So if it is necessitated by logic or nature, that's included.
'Metaphysical' modality is the one that makes the necessity or contingency of laws of nature interesting [Rosen]
     Full Idea: 'Metaphysical' modality is the sort of modality relative to which it is an interesting question whether the laws of nature are necessary or contingent.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: Being an essentialist here, I take it that the stuff of the universe necessitates the so-called 'laws'. The metaphysically interesting question is whether the stuff might have been different. Search me! A nice test of metaphysical modality though.
Sets, universals and aggregates may be metaphysically necessary in one sense, but not another [Rosen]
     Full Idea: It may be metaphysically necessary in one sense that sets or universals or mereological aggregates exist, while in another sense existence is always a contingent matter.
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: This idea depends on Idea 18856 and 18857. Personally I only think mereological aggregates and sets exist when people decide that they exist, so I don't see how they could ever be necessary. I'm unconvinced about his two concepts.
The excellent notion of metaphysical 'necessity' cannot be defined [Rosen]
     Full Idea: Many of our best words in philosophy do not admit of definition, the notion of metaphysical 'necessity' being one pertinent example.
     From: Gideon Rosen (Metaphysical Dependence [2010], 03)
     A reaction: Rosen is busy defending words in metaphysics which cannot be pinned down with logical rigour. We are allowed to write □ for 'necessary', and it is accepted by logicians as being stable in a language.
Standard Metaphysical Necessity: P holds wherever the actual form of the world holds [Rosen]
     Full Idea: According to the Standard Conception of Metaphysical Necessity, P is metaphysically necessary when it holds in every possible world in which the laws of metaphysics (about the form or structure of the actual world) hold
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: Rosen has a second meaning, in Idea 18856. He thinks it is crucial to see that there are two senses, because many things come out as metaphysically necessary on one concept, but contingent on the other. Interesting....
Non-Standard Metaphysical Necessity: when ¬P is incompatible with the nature of things [Rosen]
     Full Idea: According to the Non-Standard conception of Metaphysical Necessity, P is metaphysically necessary when its negation is logically incompatible with the nature of things.
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: Rosen's new second meaning of the term. My immediate problem is with it resting on being 'logically' incompatible. Are squares 'logically' incompatible with circles? I like the idea that it rests on 'the nature of things'. (Psst! natures = essences)
10. Modality / A. Necessity / 6. Logical Necessity
Something may be necessary because of logic, but is that therefore a special sort of necessity? [Rosen]
     Full Idea: It is one thing to say that P is necessary in some generic sense because it is a truth of logic (true in all models of a language, perhaps). It is something else to say that P therefore enjoys a special sort of necessity.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: This encourages my thought that there is only one sort of necessity (what must be), and the variety comes from the different types of necessity makers (everything there could be, nature, duties, promises, logics, concepts...).
10. Modality / B. Possibility / 3. Combinatorial possibility
Combinatorial theories of possibility assume the principles of combination don't change across worlds [Rosen]
     Full Idea: Combinatorial theories of possibility take it for granted ....that possible worlds in general share a syntax, as it were, differing only in the constituents from which they are generated, or in the particular manner of their arrangements.
     From: Gideon Rosen (The Limits of Contingency [2006], 08)
     A reaction: For instance, it might assume that every world has 'objects', to which 'properties' and 'relations' can be attached, or to which 'functions' can apply.
10. Modality / C. Sources of Modality / 1. Sources of Necessity
Are necessary truths rooted in essences, or also in basic grounding laws? [Rosen]
     Full Idea: Fine says a truth is necessary when it is a logical consequence of the essential truths, but maybe it is a consequence of the essential truths together with the basic grounding laws (the 'Moorean connections').
     From: Gideon Rosen (Metaphysical Dependence [2010], 13)
     A reaction: I'm with Fine all the way here, as we really don't need to clog nature up with things called 'grounding laws', which are both obscure and inexplicable. Fine's story is the one for naturalistically inclined philosophers.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
A proposition is 'correctly' conceivable if an ominiscient being could conceive it [Rosen]
     Full Idea: To a first approximation, P is correctly conceivable iff it would be conceivable for a logically ominiscient being who was fully informed about the nature of things.
     From: Gideon Rosen (The Limits of Contingency [2006], 05)
     A reaction: Isn't the last bit covered by 'ominiscient'? Ah, I think the 'logically' only means they have a perfect grasp of what is consistent. This is to meet the standard problem, of ill-informed people 'conceiving' of things which are actually impossible.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
     Full Idea: In science we treat the earth's surface as flat, we assume the ocean to be infinitely deep, we use continuous functions for what we know to be quantised, and we take liquids to be continuous despite atomic theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: If fussy people like scientists do this all the time, how much more so must the confused multitude be doing the same thing all day?
18. Thought / E. Abstraction / 2. Abstracta by Selection
The Way of Abstraction used to say an abstraction is an idea that was formed by abstracting [Rosen]
     Full Idea: The simplest version of the Way of Abstraction would be to say that an object is abstract if it is a referent of an idea that was formed by abstraction, but this is wedded to an outmoded philosophy of mind.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: This presumably refers to Locke, who wields the highly ambiguous term 'idea'. But if we sort out that ambiguity (by using modern talk of mental events, concepts and content?) we might reclaim the view. But do we have a 'genetic fallacy' here?
18. Thought / E. Abstraction / 5. Abstracta by Negation
Nowadays abstractions are defined as non-spatial, causally inert things [Rosen]
     Full Idea: If any characterization of the abstract deserves to be regarded as the modern standard one, it is this: an abstract entity is a non-spatial (or non-spatiotemporal) causally inert thing. This view presents a number of perplexities...
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: As indicated in other ideas, the problem is that some abstractions do seem to be located somewhere in space-time, and to have come into existence, and to pass away. I like 'to exist is to have causal powers'. See Ideas 5992 and 8300.
Chess may be abstract, but it has existed in specific space and time [Rosen]
     Full Idea: The natural view of chess is not that it is a non-spatiotemporal mathematical object, but that it was invented at a certain time and place, that it has changed over the years, and so on.
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: This strikes me as being undeniable, and being an incredibly important point. Logicians seem to want to subsume things like games into the highly abstract world of logic and numbers. In fact the direction of explanation should be reversed.
Sets are said to be abstract and non-spatial, but a set of books can be on a shelf [Rosen]
     Full Idea: It is thought that sets are abstract, abstract objects do not exist in space, so sets must not exist in space. But it is not unnatural to say that a set of books is located on a certain shelf in the library.
     From: Gideon Rosen (Abstract Objects [2001], 'Non-spat')
     A reaction: The arguments against non-spatiality of abstractions seem to me to be conclusive. Not being able to assign a location to the cosine function is on a par with not knowing where my thoughts are located in my brain.
18. Thought / E. Abstraction / 6. Abstracta by Conflation
Conflating abstractions with either sets or universals is a big claim, needing a big defence [Rosen]
     Full Idea: The Way of Conflation account of abstractions (identifying them sets or with universals) is now relatively rare. The claim sets or universals are the only abstract objects would amount to a substantive metaphysical thesis, in need of defence.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Con')
     A reaction: If you produce a concept like 'mammal' by psychological abstraction, you do seem to end up with a set of things with shared properties, so this approach is not silly. I can't think of any examples of abstractions which are not sets or universals.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Functional terms can pick out abstractions by asserting an equivalence relation [Rosen]
     Full Idea: On Frege's suggestion, functional terms that pick out abstract expressions (such as 'direction' or 'equinumeral') have a typical form of f(a) = f(b) iff aRb, where R is an equivalence relation, a relation which is reflexive, symmetric and transitive.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: [Wright and Hale are credited with the details] This has become the modern orthodoxy among the logically-minded. Examples of R are 'parallel' or 'just as many as'. It picks out an 'aspect', which isn't far from the old view.
Abstraction by equivalence relationships might prove that a train is an abstract entity [Rosen]
     Full Idea: It seems possible to define a train in terms of its carriages and the connection relationship, which would meet the equivalence account of abstraction, but demonstrate that trains are actually abstract.
     From: Gideon Rosen (Abstract Objects [2001], 'Way of Abs')
     A reaction: [Compressed. See article for more detail] A tricky example, but a suggestive line of criticism. If you find two physical objects which relate to one another reflexively, symmetrically and transitively, they may turn out to be abstract.
19. Language / E. Analyticity / 1. Analytic Propositions
'Bachelor' consists in or reduces to 'unmarried' male, but not the other way around [Rosen]
     Full Idea: It sounds right to say that Fred's being a bachelor consists in (reduces to) being an unmarried male, but slightly off to say that Fred's being an unmarried male consists in (or reduces to) being a bachelor. There is a corresponding explanatory asymmetry.
     From: Gideon Rosen (Metaphysical Dependence [2010], 10)
     A reaction: This emerging understanding of the asymmetry of the idea shows that we are not just dealing with a simple semantic identity. Our concepts are richer than our language. He adds that a ball could be blue in virtue of being cerulean.
22. Metaethics / C. The Good / 1. Goodness / g. Consequentialism
If the aim is good outcomes, why are killings worse than deaths? [Scheffler, by Foot]
     Full Idea: It is not clear why, in the measurement of the goodness of states of affairs or total outcomes, killings for instance should count so much more heavily than deaths.
     From: report of Samuel Scheffler (The Rejection of Consequentialism [1982], pp.108-12) by Philippa Foot - Utilitarianism and the Virtues p.61
     A reaction: Or drunken drivers worse than careless drivers. Or stolen bracelets than lost bracelets. The point is that morality is about the behaviour of people, and not about consequences.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
The MRL view says laws are the theorems of the simplest and strongest account of the world [Rosen]
     Full Idea: According to the Mill-Ramsey-Lewis account of the laws of nature, a generalisation is a law just in case it is a theorem of every true account of the actual world that achieves the best overall balance of simplicity and strength.
     From: Gideon Rosen (The Limits of Contingency [2006], 08)
     A reaction: The obvious objection is that many of the theorems will be utterly trivial, and that is one thing that the laws of nature are not. Unless you are including 'metaphysical laws' about very very fundamental things, like objects, properties, relations.
27. Natural Reality / F. Chemistry / 1. Chemistry
An acid is just a proton donor [Rosen]
     Full Idea: To be an acid just is to be a proton donor.
     From: Gideon Rosen (Metaphysical Dependence [2010], 10)
     A reaction: My interest here is in whether we can say that we have found the 'essence' of an acid - so we want to know whether something 'deeper' explains the proton-donation. I suspect not. Being a proton donor happens to have a group of related consequences.