Combining Philosophers

All the ideas for Shaughan Lavine, Jonathan D. Jacobs and B Russell/AN Whitehead

unexpand these ideas     |    start again     |     specify just one area for these philosophers


72 ideas

3. Truth / B. Truthmakers / 11. Truthmaking and Correspondence
Unlike correspondence, truthmaking can be one truth to many truthmakers, or vice versa [Jacobs]
     Full Idea: I assume a form of truthmaking theory, ..which is a many-many relation, unlike, say correspondence, so that one entity can make multiple truths true and one truth can have multiple truthmakers.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §1)
     A reaction: This sounds like common sense, once you think about it. One tree makes many things true, and one statement about trees is made true by many trees.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
The best known axiomatization of PL is Whitehead/Russell, with four axioms and two rules [Russell/Whitehead, by Hughes/Cresswell]
     Full Idea: The best known axiomatization of PL is Whitehead/Russell. There are four axioms: (p∨p)→p, q→(p∨q), (p→q)→(q∨p), and (q→r)→((p∨q)→(p∨r)), plus Substitution and Modus Ponens rules.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by GE Hughes/M Cresswell - An Introduction to Modal Logic Ch.1
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
     Full Idea: Second-order set theory is just like first-order set-theory, except that we use the version of Replacement with a universal second-order quantifier over functions from set to sets.
     From: Shaughan Lavine (Understanding the Infinite [1994], VII.4)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
     Full Idea: A member m of M is an 'upper bound' of a subset N of M if m is not less than any member of N. A member m of M is a 'least upper bound' of N if m is an upper bound of N such that if l is any other upper bound of N, then m is less than l.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: [if you don't follow that, you'll have to keep rereading it till you do]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
     Full Idea: Since combinatorial collections are enumerated, some multiplicities may be too large to be gathered into combinatorial collections. But the size of a multiplicity seems quite irrelevant to whether it forms a logical connection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
     Full Idea: Many of those who are skeptical about the existence of infinite combinatorial collections would want to doubt or deny the Axiom of Choice.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
     Full Idea: The Power Set is just he codification of the fact that the collection of functions from a mathematical collection to a mathematical collection is itself a mathematical collection that can serve as a domain of mathematical study.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
     Full Idea: The Axiom of Replacement (of Skolem and Fraenkel) was remarkable for its universal acceptance, though it seemed to have no consequences except for the properties of the higher reaches of the Cantorian infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
     Full Idea: The Axiom of Foundation (Zermelo 1930) says 'Every (descending) chain in which each element is a member of the previous one is of finite length'. ..This forbids circles of membership, or ungrounded sets. ..The iterative conception gives this centre stage.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
     Full Idea: Combinatorial collections (defined just by the members) obviously obey the Axiom of Choice, while it is at best dubious whether logical connections (defined by a rule) do.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
     Full Idea: The controversy was not about Choice per se, but about the correct notion of function - between advocates of taking mathematics to be about arbitrary functions and advocates of taking it to be about functions given by rules.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
     Full Idea: The axiom of Reducibility ...is crucial in the reduction of classes to logic, ...and seems to be a quite legitimate logical notion for Russell.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 6.4
     A reaction: This is an unusual defence of the axiom, which is usually presumed to have been kicked into the long grass by Quine. If one could reduce classes to logic, that would destroy the opposition to logicism in a single neat coup.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
     Full Idea: The Peano-Russell notion of class is the 'logical' notion, where each collection is associated with some kind of definition or rule that characterises the members of the collection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
     Full Idea: The iterative conception of set was not so much as suggested, let alone advocated by anyone, until 1947.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
     Full Idea: The iterative conception of sets does not tell us how far to iterate, and so we must start with an Axiom of Infinity. It also presupposes the notion of 'transfinite iteration'.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
     Full Idea: The iterative conception does not provide a conception that unifies the axioms of set theory, ...and it has had very little impact on what theorems can be proved.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
     A reaction: He says he would like to reject the iterative conception, but it may turn out that Foundation enables new proofs in mathematics (though it hasn't so far).
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
     Full Idea: Limitation of Size has it that if a collection is the same size as a set, then it is a set. The Axiom of Replacement is characteristic of limitation of size.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
     Full Idea: A collection M is 'well-ordered' by a relation < if < linearly orders M with a least element, and every subset of M that has an upper bound not in it has an immediate successor.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro]
     Full Idea: Russell adduces two reasons against the extensional view of classes, namely the existence of the null class (which cannot very well be a collection), and the unit classes (which would have to be identical with their single elements).
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Structure and Ontology p.459
     A reaction: Gödel believes in the reality of classes. I have great sympathy with Russell, when people start to claim that sets are not just conveniences to help us think about things, but actual abstract entities. Is the singleton of my pencil is on this table?
We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead]
     Full Idea: Classes, so far as we introduce them, are merely symbolic or linguistic conveniences, not genuine objects.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.72), quoted by Penelope Maddy - Naturalism in Mathematics III.2
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
     Full Idea: The distinctive feature of second-order logic is that it presupposes that, given a domain, there is a fact of the matter about what the relations on it are, so that the range of the second-order quantifiers is fixed as soon as the domain is fixed.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
     A reaction: This sounds like a rather large assumption, which is open to challenge. I am not sure whether it was the basis of Quine's challenge to second-order logic. He seems to have disliked its vagueness, because it didn't stick with 'objects'.
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Lewis's 'strict implication' preserved Russell's confusion of 'if...then' with implication [Quine on Russell/Whitehead]
     Full Idea: Russell call 'if...then' implication, when the material conditional is a much better account; C.I.Lewis (in founding modern modal logic) preserved Russell's confusion by creating 'strict implication', and called that implication.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Willard Quine - Reply to Professor Marcus p.177
     A reaction: [A compession of Quine's paragraph]. All of this assumes that logicians can give an accurate account of what if...then means, when ordinary usage is broad and vague. Strict implication seems to drain all the normal meaning out of 'if...then'.
Russell's implication means that random sentences imply one another [Lewis,CI on Russell/Whitehead]
     Full Idea: In Mr Russell's idea of implication, if twenty random sentences from a newspaper were put in a hat, and two of them drawn at random, one will certainly imply the other, and it is an even bet the implication will be mutual.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by C.I. Lewis - A Pragmatic Conception of the A Priori p.366
     A reaction: This sort of lament leads modern logicians to suggest 'relevance' as an important criterion. It certainly seems odd that so-called 'classical logic' should contain a principle so at variance with everyday reasoning.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Russell unusually saw logic as 'interpreted' (though very general, and neutral) [Russell/Whitehead, by Linsky,B]
     Full Idea: Russell did not view logic as an uninterpreted calculus awaiting interpretations [the modern view]. Rather, logic is a single 'interpreted' body of a priori truths, of propositions rather than sentence forms - but maximally general and topic neutral.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 1
     A reaction: This is the view which Wittgenstein challenged, saying logic is just conventional. Linsky claims that Russell's logicism is much more plausible, once you understand his view of logic.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
     Full Idea: The Law of Excluded Middle is (part of) the foundation of the mathematical practice of employing proofs by contradiction.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: This applies in a lot of logic, as well as in mathematics. Come to think of it, it applies in Sudoku.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
In 'Principia' a new abstract theory of relations appeared, and was applied [Russell/Whitehead, by Gödel]
     Full Idea: In 'Principia' a young science was enriched with a new abstract theory of relations, ..and not only Cantor's set theory but also ordinary arithmetic and the theory of measurement are treated from this abstract relational standpoint.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.448
     A reaction: I presume this is accounting for relations in terms of ordered sets.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
     Full Idea: Mathematics is today thought of as the study of abstract structure, not the study of quantity. That point of view arose directly out of the development of the set-theoretic notion of abstract structure.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.2)
     A reaction: It sounds as if Structuralism, which is a controversial view in philosophy, is a fait accompli among mathematicians.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
     Full Idea: One reason to introduce the rational numbers is that it simplifes the theory of division, since every rational number is divisible by every nonzero rational number, while the analogous statement is false for the natural numbers.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.3)
     A reaction: That is, with rations every division operation has an answer.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
     Full Idea: The chief importance of the Continuum Hypothesis for Cantor (I believe) was that it would show that the real numbers form a set, and hence that they were encompassed by his theory.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
     Full Idea: The Cauchy convergence criterion for a sequence: the sequence S0,S1,... has a limit if |S(n+r) - S(n)| is less than any given quantity for every value of r and sufficiently large values of n. He proved this necessary, but not sufficient.
     From: Shaughan Lavine (Understanding the Infinite [1994], 2.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A real number is the class of rationals less than the number [Russell/Whitehead, by Shapiro]
     Full Idea: For Russell the real number 2 is the class of rationals less than 2 (i.e. 2/1). ...Notice that on this definition, real numbers are classes of rational numbers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Thinking About Mathematics 5.2
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
     Full Idea: Roughly speaking, the upper and lower parts of the Dedekind cut correspond to the commensurable ratios greater than and less than a given incommensurable ratio.
     From: Shaughan Lavine (Understanding the Infinite [1994], II.6)
     A reaction: Thus there is the problem of whether the contents of the gap are one unique thing, or many.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
     Full Idea: Counting a set produces a well-ordering of it. Conversely, if one has a well-ordering of a set, one can count it by following the well-ordering.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Cantor didn't mean that you could literally count the set, only in principle.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
     Full Idea: The indiscernibility of indefinitely large sizes will be a critical part of the theory of indefinitely large sizes.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
     Full Idea: My proposal is that the concept of the infinite began with an extrapolation from the experience of indefinitely large size.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
     A reaction: I think it might be better to talk of an 'abstraction' than an 'extrapolition', since the latter is just more of the same, which doesn't get you to concept. Lavine spends 100 pages working out his proposal.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
     Full Idea: The intuitionist endorse the actual finite, but only the potential infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
     Full Idea: The symbol 'aleph-nought' denotes the cardinal number of the set of natural numbers. The symbol 'aleph-one' denotes the next larger cardinal number. 'Aleph-omega' denotes the omega-th cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
     Full Idea: The ordinals are basic because the transfinite sets are those that can be counted, or (equivalently for Cantor), those that can be numbered by an ordinal or are well-ordered.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Lavine observes (p.55) that for Cantor 'countable' meant 'countable by God'!
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
     Full Idea: The paradox of the largest ordinal (the 'Burali-Forti') is that the class of all ordinal numbers is apparently well-ordered, and so it has an ordinal number as order type, which must be the largest ordinal - but all ordinals can be increased by one.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
     Full Idea: The paradox of the largest cardinal ('Cantor's Paradox') says the diagonal argument shows there is no largest cardinal, but the class of all individuals (including the classes) must be the largest cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / a. Defining numbers
Russell takes numbers to be classes, but then reduces the classes to numerical quantifiers [Russell/Whitehead, by Bostock]
     Full Idea: Although Russell takes numbers to be certain classes, his 'no-class' theory then eliminates all mention of classes in favour of the 'propositional functions' that define them; and in the case of the numbers these just are the numerical quantifiers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by David Bostock - Philosophy of Mathematics 9.B.4
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
     Full Idea: Every theorem of mathematics has a counterpart with set theory - ...but that theory cannot serve as a basis for the notion of proof.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
     Full Idea: In modern mathematics virtually all work is only up to isomorphism and no one cares what the numbers or points and lines 'really are'.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: At least that leaves the field open for philosophers, because we do care what things really are. So should everybody else, but there is no persuading some people.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Russell and Whitehead took arithmetic to be higher-order logic [Russell/Whitehead, by Hodes]
     Full Idea: Russell and Whitehead took arithmetic to be higher-order logic, ..and came close to identifying numbers with numerical quantifiers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.148
     A reaction: The point here is 'higher-order'.
Russell and Whitehead were not realists, but embraced nearly all of maths in logic [Russell/Whitehead, by Friend]
     Full Idea: Unlike Frege, Russell and Whitehead were not realists about mathematical objects, and whereas Frege thought that only arithmetic and analysis are branches of logic, they think the vast majority of mathematics (including geometry) is essentially logical.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.1
     A reaction: If, in essence, Descartes reduced geometry to algebra (by inventing co-ordinates), then geometry ought to be included. It is characteristic of Russell's hubris to want to embrace everything.
'Principia' lacks a precise statement of the syntax [Gödel on Russell/Whitehead]
     Full Idea: What is missing, above all, in 'Principia', is a precise statement of the syntax of the formalism.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.448
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
The ramified theory of types used propositional functions, and covered bound variables [Russell/Whitehead, by George/Velleman]
     Full Idea: Russell and Whitehead's ramified theory of types worked not with sets, but with propositional functions (similar to Frege's concepts), with a more restrictive assignment of variables, insisting that bound, as well as free, variables be of lower type.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.3
     A reaction: I don't fully understand this (and no one seems much interested any more), but I think variables are a key notion, and there is something interesting going on here. I am intrigued by ordinary language which behaves like variables.
The Russell/Whitehead type theory was limited, and was not really logic [Friend on Russell/Whitehead]
     Full Idea: The Russell/Whitehead type theory reduces mathematics to a consistent founding discipline, but is criticised for not really being logic. They could not prove the existence of infinite sets, and introduced a non-logical 'axiom of reducibility'.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.6
     A reaction: To have reduced most of mathematics to a founding discipline sounds like quite an achievement, and its failure to be based in pure logic doesn't sound too bad. However, it seems to reduce some maths to just other maths.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
In 'Principia Mathematica', logic is exceeded in the axioms of infinity and reducibility, and in the domains [Bernays on Russell/Whitehead]
     Full Idea: In the system of 'Principia Mathematica', it is not only the axioms of infinity and reducibility which go beyond pure logic, but also the initial conception of a universal domain of individuals and of a domain of predicates.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913], p.267) by Paul Bernays - On Platonism in Mathematics p.267
     A reaction: This sort of criticism seems to be the real collapse of the logicist programme, rather than Russell's paradox, or Gödel's Incompleteness Theorems. It just became impossible to stick strictly to logic in the reduction of arithmetic.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Russell and Whitehead consider the paradoxes to indicate that we create mathematical reality [Russell/Whitehead, by Friend]
     Full Idea: Russell and Whitehead are particularly careful to avoid paradox, and consider the paradoxes to indicate that we create mathematical reality.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.1
     A reaction: This strikes me as quite a good argument. It is certainly counterintuitive that reality, and abstractions from reality, would contain contradictions. The realist view would be that we have paradoxes because we have misdescribed the facts.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
     Full Idea: Intuitionism in philosophy of mathematics rejects set-theoretic foundations.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3 n33)
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
To avoid vicious circularity Russell produced ramified type theory, but Ramsey simplified it [Russell/Whitehead, by Shapiro]
     Full Idea: Russell insisted on the vicious circle principle, and thus rejected impredicative definitions, which resulted in an unwieldy ramified type theory, with the ad hoc axiom of reducibility. Ramsey's simpler theory was impredicative and avoided the axiom.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: Nowadays the theory of types seems to have been given up, possibly because it has no real attraction if it lacks the strict character which Russell aspired to.
8. Modes of Existence / A. Relations / 3. Structural Relations
If structures result from intrinsic natures of properties, the 'relations' between them can drop out [Jacobs]
     Full Idea: If a relation holds between two properties as a result of their intrinsic natures, then it appears the relation between the properties is not needed to do the structuring of reality; the properties themselves suffice to fix the structure.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §4.1)
     A reaction: [the first bit quotes Jubien 2007] He cites a group of scientific essentialists as spokesmen for this view. Sounds right to me. No on seems able to pin down what a relation is - which may be because there is no such entity.
8. Modes of Existence / C. Powers and Dispositions / 1. Powers
Science aims at identifying the structure and nature of the powers that exist [Jacobs]
     Full Idea: Scientific practice seems aimed precisely at identifying the structure and nature of the powers that exist.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §4.3)
     A reaction: Good. Friends of powers should look at this nice paper by Jacobs. There is a good degree of support for this view from pronouncements of modern scientists. If scientists don't support it, they should. Otherwise they are trapped in the superficial.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
Powers come from concrete particulars, not from the laws of nature [Jacobs]
     Full Idea: The source of powers is not the laws of nature; it is the powerful nature of the ordinary properties of concrete particulars.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §4.2)
     A reaction: This pithily summarises my own view. People who think the powers of the world derive from the laws either have an implicit religious framework, or they are giving no thought at all to the ontological status of the laws.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
An object is identical with itself, and no different indiscernible object can share that [Russell/Whitehead, by Adams,RM]
     Full Idea: Trivially, the Identity of Indiscernibles says that two individuals, Castor and Pollux, cannot have all properties in common. For Castor must have the properties of being identical with Castor and not being identical with Pollux, which Pollux can't share.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913], I p.57) by Robert Merrihew Adams - Primitive Thisness and Primitive Identity 2
     A reaction: I suspect that either the property of being identical with itself is quite vacuous, or it is parasytic on primitive identity, or it is the criterion which is actually used to define identity. Either way, I don't find this claim very illuminating.
10. Modality / A. Necessity / 10. Impossibility
Possibilities are manifestations of some power, and impossibilies rest on no powers [Jacobs]
     Full Idea: To be possible is just to be one of the many manifestations of some power, and to be impossible is to be a manifestation of no power.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §4.2.1)
     A reaction: [This remark occurs in a discussion of theistic Aristotelianism] I like this. If we say that something is possible, the correct question is to ask what power could bring it about.
10. Modality / B. Possibility / 1. Possibility
States of affairs are only possible if some substance could initiate a causal chain to get there [Jacobs]
     Full Idea: A non-actual state of affairs in possible if there actually was a substance capable of initiating a causal chain, perhaps non-deterministic, that could lead to the state of affairs that we claim is possible.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §4.2)
     A reaction: [He is quoting A.R. Pruss 2002] That seems exactly right. Of course the initial substance(s) might create a further substance, such as a transuranic element, which then produces the state of affairs. I favour this strongly actualist view.
10. Modality / B. Possibility / 9. Counterfactuals
Counterfactuals invite us to consider the powers picked out by the antecedent [Jacobs]
     Full Idea: A counterfactual is an invitation to consider what the properties picked out by the antecedent are powers for (where Lewis 1973 took it to be an invitation to consider what goes on in a selected possible world).
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §4.4.3)
     A reaction: A beautifully simple proposal from Jacobs, with which I agree. This seems to be an expansion of the Ramsey test for conditionals, where you consider the antecedent being true, and see what follows. What, we ask Ramsey, would make it follow?
10. Modality / C. Sources of Modality / 1. Sources of Necessity
Possible worlds are just not suitable truthmakers for modality [Jacobs]
     Full Idea: Possible worlds are just not the sorts of things that could ground modality; they are not suitable truthmakers.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §3)
     A reaction: Are possible world theorists actually claiming that the worlds 'ground' modality? Maybe Lewis is, since all those concrete worlds had better do some hard work, but for the ersatzist they just provide a kind of formal semantics, leaving ontology to others.
10. Modality / C. Sources of Modality / 5. Modality from Actuality
All modality is in the properties and relations of the actual world [Jacobs]
     Full Idea: Properties and the relations between them introduce modal connections in the actual world. ..This is a strong form of actualism, since all of modality is part of the fundamental fabric of the actual world.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §4)
     A reaction: This is the view of modality which I find most congenial, with the notion of 'powers' giving us the conceptual framework on which to build an account.
10. Modality / C. Sources of Modality / 6. Necessity from Essence
We can base counterfactuals on powers, not possible worlds, and hence define necessity [Jacobs]
     Full Idea: Together with a definition of possibility and necessity in terms of counterfactuals, the powers semantics of counterfactuals generates a semantics for modality that appeals to causal powers and not possible worlds.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §1)
     A reaction: Wonderful. Just what the doctor ordered. The only caveat is that if we say that reality is built up from fundamental powers, then might those powers change their character without losing their identity (e.g. gravity getting weaker)?
10. Modality / E. Possible worlds / 1. Possible Worlds / c. Possible worlds realism
Concrete worlds, unlike fictions, at least offer evidence of how the actual world could be [Jacobs]
     Full Idea: Lewis's concrete worlds give a better account of modality (than fictional worlds). When I learn that a man like me drives a truck, I gain evidence for the fact that I can drive a truck.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §3)
     A reaction: Cf. Idea 12464. Jacobs still rightly rejects this as an account of possibility, since the possibility that I might drive a truck must be rooted in me, not in some other person who drives a truck, even if that person is very like me.
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
If some book described a possibe life for you, that isn't what makes such a life possible [Jacobs]
     Full Idea: Suppose somewhere deep in the rain forest is a book that includes a story about you as a truck-driver. I doubt that you would be inclined the think that that story, that book, is the reason you could have been a truck driver.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §3)
     A reaction: This begins to look like a totally overwhelming and obvious reason why possible worlds (especially as stories) don't give a good metaphysical account of possibility. They provide a semantic structure for modal reasoning, but that is entirely different.
Possible worlds semantics gives little insight into modality [Jacobs]
     Full Idea: If we want our semantics for modality to give us insight into the truthmakers for modality, then possible worlds semantics is inadequate.
     From: Jonathan D. Jacobs (A Powers Theory of Modality [2010], §4.4)
     A reaction: [See the other ideas of Jacobs (and Jubien) for this] It is an interesting question whether a semantics for a logic is meant to give us insight into how things really are, or whether it just builds nice models. Satisfaction, or truth?
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Russell showed, through the paradoxes, that our basic logical intuitions are self-contradictory [Russell/Whitehead, by Gödel]
     Full Idea: By analyzing the paradoxes to which Cantor's set theory had led, ..Russell brought to light the amazing fact that our logical intuitions (concerning such notions as truth, concept, being, class) are self-contradictory.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.452
     A reaction: The main intuition that failed was, I take it, that every concept has an extension, that is, there are always objects which will or could fall under the concept.
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
The multiple relations theory says assertions about propositions are about their ingredients [Russell/Whitehead, by Linsky,B]
     Full Idea: The multiple relations theory of judgement proposes that assertions about propositions are dependent upon genuine facts involving belief and other attitude relations, subjects of those attitudes, and the constituents of the belief.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 7.2
     A reaction: This seems to require a commitment to universals (especially relations) with which we can be directly acquainted. I prefer propositions, but as mental entities, not platonic entities.
A judgement is a complex entity, of mind and various objects [Russell/Whitehead]
     Full Idea: When a judgement occurs, there is a certain complex entity, composed of the mind and the various objects of the judgement.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44)
     A reaction: This is Russell's multiple-relation theory of judgement, which replaced his earlier belief in unified propositions (now 'false abstractions'). He seems to have accepted Locke's view, that the act of judgement produces the unity.
The meaning of 'Socrates is human' is completed by a judgement [Russell/Whitehead]
     Full Idea: When I judge 'Socrates is human', the meaning is completed by the act of judging.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by Michael Morris - Guidebook to Wittgenstein's Tractatus
     A reaction: Morris says this is Russell's multiple-relations theory of judgement. The theory accompanies the rejection of the concept of the unified proposition. When I hear 'Socrates had a mole on his shoulder' I get the meaning without judging.
The multiple relation theory of judgement couldn't explain the unity of sentences [Morris,M on Russell/Whitehead]
     Full Idea: When Russell moved to his multiple relation theory of judgement …he then faced difficulties making sense of the unity of sentences.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913], p.44) by Michael Morris - Guidebook to Wittgenstein's Tractatus 3A
     A reaction: Roughly, he seems committed to saying that there is only unity if you think there is unity; there is no unity in a sentence prior to the act of judgement.
Only the act of judging completes the meaning of a statement [Russell/Whitehead]
     Full Idea: When I judge 'Socrates is human', the meaning is completed by the act of judging, and we no longer have an incomplete symbol.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap
     A reaction: Personally I would have thought that you needed to know the meaning properly before you could make the judgement, but then he is Bertrand Russell and I'm not.
19. Language / D. Propositions / 3. Concrete Propositions
Propositions as objects of judgement don't exist, because we judge several objects, not one [Russell/Whitehead]
     Full Idea: A 'proposition', in the sense in which a proposition is supposed to be the object of a judgement, is a false abstraction, because a judgement has several objects, not one.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by Michael Morris - Guidebook to Wittgenstein's Tractatus 2E
     A reaction: This is the rejection of the 'Russellian' theory of propositions, in favour of his multiple-relations theory of judgement. But why don't the related objects add up to a proposition about a state of affairs?