Combining Philosophers

All the ideas for Shaughan Lavine, Joseph Melia and John Haldane

unexpand these ideas     |    start again     |     specify just one area for these philosophers


51 ideas

2. Reason / A. Nature of Reason / 1. On Reason
Consistency is modal, saying propositions are consistent if they could be true together [Melia]
     Full Idea: Consistency is a modal notion: a set of propositions is consistent iff all the members of the set could be true together.
     From: Joseph Melia (Modality [2003], Ch.6)
     A reaction: This shows why Kantian ethics, for example, needs a metaphysical underpinning. Maybe Kant should have believed in the reality of Leibnizian possible worlds? An account of reason requires an account of necessity and possibility.
4. Formal Logic / C. Predicate Calculus PC / 1. Predicate Calculus PC
Predicate logic has connectives, quantifiers, variables, predicates, equality, names and brackets [Melia]
     Full Idea: First-order predicate language has four connectives, two quantifiers, variables, predicates, equality, names, and brackets.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: Look up the reference for the details! The spirit of logic is seen in this basic framework, and the main interest is in the ontological commitment of the items on the list. The list is either known a priori, or it is merely conventional.
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
First-order predicate calculus is extensional logic, but quantified modal logic is intensional (hence dubious) [Melia]
     Full Idea: First-order predicate calculus is an extensional logic, while quantified modal logic is intensional (which has grave problems of interpretation, according to Quine).
     From: Joseph Melia (Modality [2003], Ch.3)
     A reaction: The battle is over ontology. Quine wants the ontology to stick with the values of the variables (i.e. the items in the real world that are quantified over in the extension). The rival view arises from attempts to explain necessity and counterfactuals.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
     Full Idea: Second-order set theory is just like first-order set-theory, except that we use the version of Replacement with a universal second-order quantifier over functions from set to sets.
     From: Shaughan Lavine (Understanding the Infinite [1994], VII.4)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
     Full Idea: A member m of M is an 'upper bound' of a subset N of M if m is not less than any member of N. A member m of M is a 'least upper bound' of N if m is an upper bound of N such that if l is any other upper bound of N, then m is less than l.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: [if you don't follow that, you'll have to keep rereading it till you do]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
     Full Idea: Since combinatorial collections are enumerated, some multiplicities may be too large to be gathered into combinatorial collections. But the size of a multiplicity seems quite irrelevant to whether it forms a logical connection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
     Full Idea: Many of those who are skeptical about the existence of infinite combinatorial collections would want to doubt or deny the Axiom of Choice.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
     Full Idea: The Power Set is just he codification of the fact that the collection of functions from a mathematical collection to a mathematical collection is itself a mathematical collection that can serve as a domain of mathematical study.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
     Full Idea: The Axiom of Replacement (of Skolem and Fraenkel) was remarkable for its universal acceptance, though it seemed to have no consequences except for the properties of the higher reaches of the Cantorian infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
     Full Idea: The Axiom of Foundation (Zermelo 1930) says 'Every (descending) chain in which each element is a member of the previous one is of finite length'. ..This forbids circles of membership, or ungrounded sets. ..The iterative conception gives this centre stage.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
     Full Idea: Combinatorial collections (defined just by the members) obviously obey the Axiom of Choice, while it is at best dubious whether logical connections (defined by a rule) do.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
     Full Idea: The controversy was not about Choice per se, but about the correct notion of function - between advocates of taking mathematics to be about arbitrary functions and advocates of taking it to be about functions given by rules.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
     Full Idea: The Peano-Russell notion of class is the 'logical' notion, where each collection is associated with some kind of definition or rule that characterises the members of the collection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
     Full Idea: The iterative conception of set was not so much as suggested, let alone advocated by anyone, until 1947.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
     Full Idea: The iterative conception of sets does not tell us how far to iterate, and so we must start with an Axiom of Infinity. It also presupposes the notion of 'transfinite iteration'.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
     Full Idea: The iterative conception does not provide a conception that unifies the axioms of set theory, ...and it has had very little impact on what theorems can be proved.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
     A reaction: He says he would like to reject the iterative conception, but it may turn out that Foundation enables new proofs in mathematics (though it hasn't so far).
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
     Full Idea: Limitation of Size has it that if a collection is the same size as a set, then it is a set. The Axiom of Replacement is characteristic of limitation of size.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
     Full Idea: A collection M is 'well-ordered' by a relation < if < linearly orders M with a least element, and every subset of M that has an upper bound not in it has an immediate successor.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
     Full Idea: The distinctive feature of second-order logic is that it presupposes that, given a domain, there is a fact of the matter about what the relations on it are, so that the range of the second-order quantifiers is fixed as soon as the domain is fixed.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
     A reaction: This sounds like a rather large assumption, which is open to challenge. I am not sure whether it was the basis of Quine's challenge to second-order logic. He seems to have disliked its vagueness, because it didn't stick with 'objects'.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
     Full Idea: The Law of Excluded Middle is (part of) the foundation of the mathematical practice of employing proofs by contradiction.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: This applies in a lot of logic, as well as in mathematics. Come to think of it, it applies in Sudoku.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order logic needs second-order variables and quantification into predicate position [Melia]
     Full Idea: Permitting quantification into predicate position and adding second-order variables leads to second-order logic.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: Often expressed by saying that we now quantify over predicates and relations, rather than just objects. Depends on your metaphysical commitments.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
If every model that makes premises true also makes conclusion true, the argument is valid [Melia]
     Full Idea: In first-order predicate calculus validity is defined thus: an argument is valid iff every model that makes the premises of the argument true also makes the conclusion of the argument true.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: See Melia Ch. 2 for an explanation of a 'model'. Traditional views of validity tend to say that if the premises are true the conclusion has to be true (necessarily), but this introduces the modal term 'necessarily', which is controversial.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
     Full Idea: Mathematics is today thought of as the study of abstract structure, not the study of quantity. That point of view arose directly out of the development of the set-theoretic notion of abstract structure.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.2)
     A reaction: It sounds as if Structuralism, which is a controversial view in philosophy, is a fait accompli among mathematicians.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
     Full Idea: One reason to introduce the rational numbers is that it simplifes the theory of division, since every rational number is divisible by every nonzero rational number, while the analogous statement is false for the natural numbers.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.3)
     A reaction: That is, with rations every division operation has an answer.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
     Full Idea: The chief importance of the Continuum Hypothesis for Cantor (I believe) was that it would show that the real numbers form a set, and hence that they were encompassed by his theory.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
     Full Idea: The Cauchy convergence criterion for a sequence: the sequence S0,S1,... has a limit if |S(n+r) - S(n)| is less than any given quantity for every value of r and sufficiently large values of n. He proved this necessary, but not sufficient.
     From: Shaughan Lavine (Understanding the Infinite [1994], 2.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
     Full Idea: Roughly speaking, the upper and lower parts of the Dedekind cut correspond to the commensurable ratios greater than and less than a given incommensurable ratio.
     From: Shaughan Lavine (Understanding the Infinite [1994], II.6)
     A reaction: Thus there is the problem of whether the contents of the gap are one unique thing, or many.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
     Full Idea: Counting a set produces a well-ordering of it. Conversely, if one has a well-ordering of a set, one can count it by following the well-ordering.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Cantor didn't mean that you could literally count the set, only in principle.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
     Full Idea: The indiscernibility of indefinitely large sizes will be a critical part of the theory of indefinitely large sizes.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
     Full Idea: My proposal is that the concept of the infinite began with an extrapolation from the experience of indefinitely large size.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
     A reaction: I think it might be better to talk of an 'abstraction' than an 'extrapolition', since the latter is just more of the same, which doesn't get you to concept. Lavine spends 100 pages working out his proposal.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
     Full Idea: The intuitionist endorse the actual finite, but only the potential infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
     Full Idea: The symbol 'aleph-nought' denotes the cardinal number of the set of natural numbers. The symbol 'aleph-one' denotes the next larger cardinal number. 'Aleph-omega' denotes the omega-th cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
     Full Idea: The ordinals are basic because the transfinite sets are those that can be counted, or (equivalently for Cantor), those that can be numbered by an ordinal or are well-ordered.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Lavine observes (p.55) that for Cantor 'countable' meant 'countable by God'!
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
     Full Idea: The paradox of the largest ordinal (the 'Burali-Forti') is that the class of all ordinal numbers is apparently well-ordered, and so it has an ordinal number as order type, which must be the largest ordinal - but all ordinals can be increased by one.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
     Full Idea: The paradox of the largest cardinal ('Cantor's Paradox') says the diagonal argument shows there is no largest cardinal, but the class of all individuals (including the classes) must be the largest cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
     Full Idea: Every theorem of mathematics has a counterpart with set theory - ...but that theory cannot serve as a basis for the notion of proof.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
     Full Idea: In modern mathematics virtually all work is only up to isomorphism and no one cares what the numbers or points and lines 'really are'.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: At least that leaves the field open for philosophers, because we do care what things really are. So should everybody else, but there is no persuading some people.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
     Full Idea: Intuitionism in philosophy of mathematics rejects set-theoretic foundations.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3 n33)
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
No sort of plain language or levels of logic can express modal facts properly [Melia]
     Full Idea: Some philosophers say that modal facts cannot be expressed either by name/predicate language, or by first-order predicate calculus, or even by second-order logic.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: If 'possible' were a predicate, none of this paraphernalia would be needed. If possible worlds are accepted, then the quantifiers of first-order predicate calculus will do the job. If neither of these will do, there seems to be a problem.
Maybe names and predicates can capture any fact [Melia]
     Full Idea: Some philosophers think that any fact can be captured in a language containing only names and predicates.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: The problem case Melia is discussing is modal facts, such as 'x is possible'. It is hard to see how 'possible' could be an ordinary predicate, but then McGinn claims that 'existence' is, and that there are some predicates with unusual characters.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Identity of Indiscernibles is contentious for qualities, and trivial for non-qualities [Melia]
     Full Idea: If the Identity of Indiscernibles is referring to qualitative properties, such as 'being red' or 'having mass', it is contentious; if it is referring to non-qualitative properties, such as 'member of set s' or 'brother of a', it is true but trivial.
     From: Joseph Melia (Modality [2003], Ch.3 n 11)
     A reaction: I would say 'false' rather than 'contentious'. No one has ever offered a way of distinguishing two electrons, but that doesn't mean there is just one (very busy) electron. The problem is that 'indiscernible' is only an epistemological concept.
10. Modality / A. Necessity / 2. Nature of Necessity
We may be sure that P is necessary, but is it necessarily necessary? [Melia]
     Full Idea: We may have fairly firm beliefs as to whether or not P is necessary, but many of us find ourselves at a complete loss when wondering whether or not P is necessarily necessary.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: I think it is questions like this which are pushing philosophy back towards some sort of rationalism. See Idea 3651, for example. A regress of necessities would be mad, so necessity must be taken as self-evident (in itself, though maybe not to us).
10. Modality / A. Necessity / 4. De re / De dicto modality
'De re' modality is about things themselves, 'de dicto' modality is about propositions [Melia]
     Full Idea: In cases of 'de re' modality, it is a particular thing that has the property essentially or accidentally; where the modality attaches to the proposition, it is 'de dicto' - it is the whole truth that all bachelors are unmarried that is necessary.
     From: Joseph Melia (Modality [2003], Ch.1)
     A reaction: This seems to me one of the most important distinctions in metaphysics (as practised by analytical philosophers, who like distinctions). The first type leads off into the ontology, the second type veers towards epistemology.
10. Modality / B. Possibility / 1. Possibility
Sometimes we want to specify in what ways a thing is possible [Melia]
     Full Idea: Sometimes we want to count the ways in which something is possible, or say that there are many ways in which a certain thing is possible.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: This is a basic fact about talk of 'possibility'. It is not an all-or-nothing property of a situation. There can be 'faint' possibilities of things. The proximity of some possible worlds, especially those sharing our natural laws, is one answer.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Possible worlds make it possible to define necessity and counterfactuals without new primitives [Melia]
     Full Idea: In modal logic the concepts of necessity and counterfactuals are not interdefinable, so the language needs two primitives to represent them, but with the machinery of possible worlds they are defined by what is the case in all worlds, or close worlds.
     From: Joseph Melia (Modality [2003], Ch.1)
     A reaction: If your motivation is to reduce ontology to the barest of minimums (which it was for David Lewis) then it is paradoxical that the existence of possible worlds may be the way to achieve it. I doubt, though, whether a commitment to their reality is needed.
In possible worlds semantics the modal operators are treated as quantifiers [Melia]
     Full Idea: The central idea in possible worlds semantics is that the modal operators are treated as quantifiers.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: It seems an essential requirement of metaphysics that an account be given of possibility and necessity, and it is also a good dream to keep the ontology simple. Commitment to possible worlds is the bizarre outcome of this dream.
If possible worlds semantics is not realist about possible worlds, logic becomes merely formal [Melia]
     Full Idea: It has proved difficult to justify possible worlds semantics without accepting possible worlds. Without a secure metaphysical underpinning, the results in logic are in danger of having nothing more than a formal significance.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: This makes nicely clear why Lewis's controversial modal realism has to be taken seriously. It appears that the key problem is truth, because that is needed to define validity, but you can't have truth without some sort of metaphysics.
Possible worlds could be real as mathematics, propositions, properties, or like books [Melia]
     Full Idea: One can be a realist about possible worlds without adopting Lewis's extreme views; they might be abstract or mathematical entities; they might be sets of propositions or maximal uninstantiated properties; they might be like books or pictures.
     From: Joseph Melia (Modality [2003], Ch.6)
     A reaction: My intuition is that once you go down the road of realism about possible worlds, Lewis's full concrete realism looks at least as attractive as any of these options. You can discuss the 'average man' in an economic theory without realism.
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / b. Worlds as fictions
The truth of propositions at possible worlds are implied by the world, just as in books [Melia]
     Full Idea: Propositions are true at possible worlds in much the same way as they are true at books: by being implied by the book.
     From: Joseph Melia (Modality [2003], Ch.7)
     A reaction: An intriguing way to introduce the view that possible worlds should be seen as like books. The truth-makers of propositions about the actual world are items in it, but the truth-makers in novels (say) are the conditions of the whole work as united.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
We accept unverifiable propositions because of simplicity, utility, explanation and plausibility [Melia]
     Full Idea: Many philosophers now concede that it is rational to accept a proposition not because we can directly verify it but because it is supported by considerations of simplicity, theoretical utility, explanatory power and/or intuitive plausibility.
     From: Joseph Melia (Modality [2003], Ch.5)
     A reaction: This suggests how the weakness of logical positivism may have led us to the concept of epistemic virtues (such as those listed), which are, of course, largely a matter of community consensus, just as the moral virtues are.
24. Political Theory / D. Ideologies / 6. Liberalism / g. Liberalism critique
Liberalism may fail because it neglects the shared nature of what we pursue and protect [Haldane]
     Full Idea: I am interested in the claim that liberalism fails inasmuch as it neglects, and cannot accommodate, the fact that some or all of the goods we pursue, and which a system of rights is concerned to protect, are goods possessed in common.
     From: John Haldane (The Individual, the State, and the Common Good [1996], III)
     A reaction: It depends how individualistic we take liberalism to be. Extreme individualism (Nozick) strikes me as crazy. If 'we' erect a statue to some dubious politicians, it might be presented as a common good, but actually be despised by many.