Combining Philosophers

All the ideas for Steven Pinker, John Mayberry and B Hale / C Wright

unexpand these ideas     |    start again     |     specify just one area for these philosophers


64 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
2. Reason / F. Fallacies / 1. Fallacy
It is a fallacy to explain the obscure with the even more obscure [Hale/Wright]
     Full Idea: The fallacy of 'ad obscurum per obscurius' is to explain the obscure by appeal to what is more obscure.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §3)
     A reaction: Not strictly a fallacy, so much as an example of inadequate explanation, along with circularity and infinite regresses.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
Singular terms refer if they make certain atomic statements true [Hale/Wright]
     Full Idea: Anyone should agree that a justification for regarding a singular term as having objectual reference is provided just as soon as one has justification for regarding as true certain atomic statements in which it functions as a singular term.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §9)
     A reaction: The meat of this idea is hidden in the word 'certain'. See Idea 10314 for Hale's explanation. Without that, the proposal strikes me as absurd.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / c. Grelling's paradox
If 'x is heterological' iff it does not apply to itself, then 'heterological' is heterological if it isn't heterological [Hale/Wright]
     Full Idea: If we stipulate that 'x is heterological' iff it does not apply to itself, we speedily arrive at the contradiction that 'heterological' is itself heterological just in case it is not.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
The incompletability of formal arithmetic reveals that logic also cannot be completely characterized [Hale/Wright]
     Full Idea: The incompletability of formal arithmetic reveals, not arithmetical truths which are not truths of logic, but that logical truth likewise defies complete deductive characterization. ...Gödel's result has no specific bearing on the logicist project.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], §2 n5)
     A reaction: This is the key defence against the claim that Gödel's First Theorem demolished logicism.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Neo-logicism founds arithmetic on Hume's Principle along with second-order logic [Hale/Wright]
     Full Idea: The result of joining Hume's Principle to second-order logic is a consistent system which is a foundation for arithmetic, in the sense that all the fundamental laws of arithmetic are derivable within it as theorems. This seems a vindication of logicism.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1)
     A reaction: The controversial part seems to be second-order logic, which Quine (for example) vigorously challenged. The contention against most attempts to improve Frege's logicism is that they thereby cease to be properly logical.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
The Julius Caesar problem asks for a criterion for the concept of a 'number' [Hale/Wright]
     Full Idea: The Julius Caesar problem is the problem of supplying a criterion of application for 'number', and thereby setting it up as the concept of a genuine sort of object. (Why is Julius Caesar not a number?)
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 3)
     A reaction: One response would be to deny that numbers are objects. Another would be to derive numbers from their application in counting objects, rather than the other way round. I suspect that the problem only real bothers platonists. Serves them right.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If structures are relative, this undermines truth-value and objectivity [Hale/Wright]
     Full Idea: The relativization of ontology to theory in structuralism can't avoid carrying with it a relativization of truth-value, which would compromise the objectivity which structuralists wish to claim for mathematics.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2 n26)
     A reaction: This is the attraction of structures which grow out of the physical world, where truth-value is presumably not in dispute.
The structural view of numbers doesn't fit their usage outside arithmetical contexts [Hale/Wright]
     Full Idea: It is not clear how the view that natural numbers are purely intra-structural 'objects' can be squared with the widespread use of numerals outside purely arithmetical contexts.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2 n26)
     A reaction: I don't understand this objection. If they refer to quantity, they are implicitly cardinal. If they name things in a sequence they are implicitly ordinal. All users of numbers have a grasp of the basic structure.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicism is only noteworthy if logic has a privileged position in our ontology and epistemology [Hale/Wright]
     Full Idea: It is only if logic is metaphysically and epistemologically privileged that a reduction of mathematical theories to logical ones can be philosophically any more noteworthy than a reduction of any mathematical theory to any other.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 8)
     A reaction: It would be hard to demonstrate this privileged position, though intuitively there is nothing more basic in human rationality. That may be a fact about us, but it doesn't make logic basic to nature, which is where proper reduction should be heading.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The neo-Fregean is more optimistic than Frege about contextual definitions of numbers [Hale/Wright]
     Full Idea: The neo-Fregean takes a more optimistic view than Frege of the prospects for the kind of contextual explanation of the fundamental concepts of arithmetic and analysis (cardinals and reals), which he rejected in 'Grundlagen' 60-68.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], §1)
Logicism might also be revived with a quantificational approach, or an abstraction-free approach [Hale/Wright]
     Full Idea: Two modern approaches to logicism are the quantificational approach of David Bostock, and the abstraction-free approach of Neil Tennant.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1 n2)
     A reaction: Hale and Wright mention these as alternatives to their own view. I merely catalogue them for further examination. My immediate reaction is that Bostock sounds hopeless and Tennant sounds interesting.
Neo-Fregeanism might be better with truth-makers, rather than quantifier commitment [Hale/Wright]
     Full Idea: A third way has been offered to 'make sense' of neo-Fregeanism: we should reject Quine's well-known criterion of ontological commitment in favour of one based on 'truth-maker theory'.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §4 n19)
     A reaction: [The cite Ross Cameron for this] They reject this proposal, on the grounds that truth-maker theory is not sufficient to fix the grounding truth-conditions of statements.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Are neo-Fregeans 'maximalists' - that everything which can exist does exist? [Hale/Wright]
     Full Idea: It is claimed that neo-Fregeans are committed to 'maximalism' - that whatever can exist does.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §4)
     A reaction: [The cite Eklund] They observe that maximalism denies contingent non-existence (of the £20 note I haven't got). There seems to be the related problem of 'hyperinflation', that if abstract objects are generated logically, the process is unstoppable.
7. Existence / C. Structure of Existence / 2. Reduction
Good reductionism connects fields of knowledge, but doesn't replace one with another [Pinker]
     Full Idea: Good reductionism (also called 'hierarchical reductionism') consists not of replacing one field of knowledge with another, but of connecting or unifying them.
     From: Steven Pinker (The Blank Slate [2002], Ch.4)
     A reaction: A nice simple clarification. In this sense I am definitely a reductionist about mind (indeed, about everything). There is nothing threatening to even 'spiritual' understanding by saying that it is connected to the brain.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
The identity of Pegasus with Pegasus may be true, despite the non-existence [Hale/Wright]
     Full Idea: Identity is sometimes read so that 'Pegasus is Pegasus' expresses a truth, the non-existence of any winged horse notwithstanding.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §5)
     A reaction: This would give you ontological commitment to truth, without commitment to existence. It undercuts the use of identity statements as the basis of existence claims, which was Frege's strategy.
8. Modes of Existence / B. Properties / 3. Types of Properties
Maybe we have abundant properties for semantics, and sparse properties for ontology [Hale/Wright]
     Full Idea: There is a compatibilist view which says that it is for the abundant properties to play the role of 'bedeutungen' in semantic theory, and the sparse ones to address certain metaphysical concerns.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §9)
     A reaction: Only a philosopher could live with the word 'property' having utterly different extensions in different areas of discourse. They similarly bifurcate words like 'object' and 'exist'. Call properties 'quasi-properties' and I might join in.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
A successful predicate guarantees the existence of a property - the way of being it expresses [Hale/Wright]
     Full Idea: The good standing of a predicate is already trivially sufficient to ensure the existence of an associated property, a (perhaps complex) way of being which the predicate serves to express.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §9)
     A reaction: 'Way of being' is interesting. Is 'being near Trafalgar Sq' a way of being? I take properties to be 'features', which seems to give a clearer way of demarcating them. They say they are talking about 'abundant' (rather than 'sparse') properties.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Objects just are what singular terms refer to [Hale/Wright]
     Full Idea: Objects, as distinct from entities of other types (properties, relations or, more generally, functions of different types and levels), just are what (actual or possible) singular terms refer to.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.1)
     A reaction: I find this view very bizarre and hard to cope with. It seems either to preposterously accept the implications of the way we speak into our ontology ('sakes'?), or preposterously bend the word 'object' away from its normal meaning.
12. Knowledge Sources / D. Empiricism / 2. Associationism
Connectionists say the mind is a general purpose learning device [Pinker]
     Full Idea: Connectionists do not, of course, believe that the mind is a blank slate, but they do believe in the closest mechanistic equivalent, a general purpose learning device.
     From: Steven Pinker (The Blank Slate [2002], Ch.5)
     A reaction: This shows the closeness of connectionism to Hume's associationism (Idea 2189), which was just a minimal step away from Locke's mind as 'white paper' (Idea 7507). Pinker is defending 'human nature', but connectionism has a point.
12. Knowledge Sources / E. Direct Knowledge / 4. Memory
Is memory stored in protein sequences, neurons, synapses, or synapse-strengths? [Pinker]
     Full Idea: Are memories stored in protein sequences, in new neurons or synapses, or in changes in the strength of existing synapses?
     From: Steven Pinker (The Blank Slate [2002], Ch.5)
     A reaction: This seems to be a neat summary of current neuroscientific thinking about memory. If you are thinking that memory couldn't possibly be so physical, don't forget the mind-boggling number of events involved in each tiny memory. See Idea 6668.
16. Persons / F. Free Will / 5. Against Free Will
Roundworms live successfully with 302 neurons, so human freedom comes from our trillions [Pinker]
     Full Idea: The roundworm only has 959 cells, and 302 neurons in a fixed wiring diagram; it eats, mates, approaches and avoids certain smells, and that's about it. This makes it obvious that human 'free' behaviour comes from our complex biological makeup.
     From: Steven Pinker (The Blank Slate [2002], Ch.5)
     A reaction: I find this a persuasive example. Three hundred trillion neurons cannot possibly produce behaviour which is more than broadly predictable, and then it is the environment and culture that make it predictable, not the biology.
17. Mind and Body / E. Mind as Physical / 4. Connectionism
Neural networks can generalise their training, e.g. truths about tigers apply mostly to lions [Pinker]
     Full Idea: The appeal of neural networks is that they automatically generalize their training to similar new items. If one has been trained to think tigers eat frosted flakes, it will generalise that lions do too, because it knows tigers as sets of features.
     From: Steven Pinker (The Blank Slate [2002], Ch.5)
     A reaction: This certainly is appealing, because it offers a mechanistic account of abstraction and universals, which everyone agrees are central to proper thinking.
There are five types of reasoning that seem beyond connectionist systems [Pinker, by PG]
     Full Idea: Connectionist networks have difficulty with the kind/individual distinction (ducks/this duck), with compositionality (relations), with quantification (reference of 'all'), with recursion (embedded thoughts), and the categorical reasoning (exceptions).
     From: report of Steven Pinker (The Blank Slate [2002], Ch.5) by PG - Db (ideas)
     A reaction: [Read Pinker p.80!] These are essentially all the more sophisticated aspects of logical reasoning that Pinker can think of. Personally I would be reluctant to say a priori that connectionism couldn't cope with these things, just because they seem tough.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstracted objects are not mental creations, but depend on equivalence between given entities [Hale/Wright]
     Full Idea: The new kind of abstract objects are not creations of the human mind. ...The existence of such objects depends upon whether or not the relevant equivalence relation holds among the entities of the presupposed kind.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2)
     A reaction: It seems odd that we no longer have any choice about what abstract objects we use, and that we can't evade them if the objects exist, and can't have them if the objects don't exist - and presumably destruction of the objects kills the concept?
One first-order abstraction principle is Frege's definition of 'direction' in terms of parallel lines [Hale/Wright]
     Full Idea: An example of a first-order abstraction principle is Frege's definition of 'direction' in terms of parallel lines; a higher-order example (which refers to first-order predicates) defines 'equinumeral' in terms of one-to-one correlation (Hume's Principle).
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1)
     A reaction: [compressed] This is the way modern logicians now treat abstraction, but abstraction principles include the elusive concept of 'equivalence' of entities, which may be no more than that the same adjective ('parallel') can be applied to them.
Abstractionism needs existential commitment and uniform truth-conditions [Hale/Wright]
     Full Idea: Abstractionism needs a face-value, existentially committed reading of the terms occurring on the left-hand sides together with sameness of truth-conditions across the biconditional.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §5)
     A reaction: They employ 'abstractionism' to mean their logical Fregean strategy for defining abstractions, not to mean the older psychological account. Thus the truth-conditions for being 'parallel' and for having the 'same direction' must be consistent.
Equivalence abstraction refers to objects otherwise beyond our grasp [Hale/Wright]
     Full Idea: Abstraction principles purport to introduce fundamental means of reference to a range of objects, to which there is accordingly no presumption that we have any prior or independent means of reference.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §8)
     A reaction: There's the rub! They make it sound like a virtue, that we open up yet another heaven of abstract toys to play with. As fictions, they are indeed exciting new fun. As platonic discoveries they strike me as Cloud-Cuckoo Land.
19. Language / B. Reference / 4. Descriptive Reference / a. Sense and reference
Reference needs truth as well as sense [Hale/Wright]
     Full Idea: It takes, over and above the possession of sense, the truth of relevant contexts to ensure reference.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §9)
     A reaction: Reference purely through sense was discredited by Kripke. The present idea challenges Kripke's baptismal realist approach. How do you 'baptise' an abstract object? But isn't reference needed prior to the establishment of truth?
19. Language / E. Analyticity / 2. Analytic Truths
Many conceptual truths ('yellow is extended') are not analytic, as derived from logic and definitions [Hale/Wright]
     Full Idea: There are many statements which are plausibly viewed as conceptual truths (such as 'what is yellow is extended') which do not qualify as analytic under Frege's definition (as provable using only logical laws and definitions).
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2)
     A reaction: Presumably this is because the early assumptions of Frege were mathematical and logical, and he was trying to get away from Kant. That yellow is extended is a truth for non-linguistic beings.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Many think that accepting human nature is to accept innumerable evils [Pinker]
     Full Idea: To acknowledge human nature, many think, is to endorse racism, sexism, war, greed, genocide, nihilism, reactionary politics, and neglect of children and the disadvantaged.
     From: Steven Pinker (The Blank Slate [2002], Pref)
     A reaction: The point is that modern liberal thinking says everything is nurture (which can be changed), not nature (which can't). Virtue theory, of which I am a fan, requires a concept of human nature, as the thing which can attain excellence in its function.
27. Natural Reality / G. Biology / 2. Life
In 1828, the stuff of life was shown to be ordinary chemistry, not a magic gel [Pinker]
     Full Idea: In 1828 Friedrich Wöhler showed [by synthesising urea in the laboratory] that the stuff of life is not a magical, pulsating gel, but ordinary compounds following the laws of chemistry.
     From: Steven Pinker (The Blank Slate [2002], Ch.3)
     A reaction: Wöhler synthesised urea in the laboratory.
27. Natural Reality / G. Biology / 3. Evolution
All the evidence says evolution is cruel and wasteful, not intelligent [Pinker]
     Full Idea: The overwhelming evidence is that the process of evolution, far from being intelligent and purposeful, is wasteful and cruel.
     From: Steven Pinker (The Blank Slate [2002], Ch.7)
     A reaction: This is why opponents should reject evolution totally, rather than compromise with it. Stick to a 6000-year-old world, fossils sent to test our faith, and species created in a flash (with no pain or waste).
Intelligent Design says that every unexplained phenomenon must be design, by default [Pinker]
     Full Idea: The originator of 'intelligent design' (the biochemist Michael Behe) takes every phenomenon whose evolutionary history has not yet been figured out, and chalks it up to design by default.
     From: Steven Pinker (The Blank Slate [2002], Ch.7)
     A reaction: This seems to summarise the strategy very nicely. The theory essentially exploits the 'wow!' factor. The bigger the wow! the more likely it is that it was created by God. But research has been eroding our wows steadily for four hundred years.