Combining Philosophers

All the ideas for Thomas Grundmann, Michal Walicki and Giuseppe Peano

unexpand these ideas     |    start again     |     specify just one area for these philosophers


33 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Numbers have been defined in terms of 'successors' to the concept of 'zero' [Peano, by Blackburn]
     Full Idea: Dedekind and Peano define the number series as the series of successors to the number zero, according to five postulates.
     From: report of Giuseppe Peano (works [1890]) by Simon Blackburn - Oxford Dictionary of Philosophy p.279
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
All models of Peano axioms are isomorphic, so the models all seem equally good for natural numbers [Cartwright,R on Peano]
     Full Idea: Peano's axioms are categorical (any two models are isomorphic). Some conclude that the concept of natural number is adequately represented by them, but we cannot identify natural numbers with one rather than another of the isomorphic models.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 11) by Richard Cartwright - Propositions 11
     A reaction: This is a striking anticipation of Benacerraf's famous point about different set theory accounts of numbers, where all models seem to work equally well. Cartwright is saying that others have pointed this out.
PA concerns any entities which satisfy the axioms [Peano, by Bostock]
     Full Idea: Peano Arithmetic is about any system of entities that satisfies the Peano axioms.
     From: report of Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 6.3) by David Bostock - Philosophy of Mathematics 6.3
     A reaction: This doesn't sound like numbers in the fullest sense, since those should facilitate counting objects. '3' should mean that number of rose petals, and not just a position in a well-ordered series.
Peano axioms not only support arithmetic, but are also fairly obvious [Peano, by Russell]
     Full Idea: Peano's premises are recommended not only by the fact that arithmetic follows from them, but also by their inherent obviousness.
     From: report of Giuseppe Peano (Principles of Arithmetic, by a new method [1889], p.276) by Bertrand Russell - Regressive Method for Premises in Mathematics p.276
0 is a non-successor number, all successors are numbers, successors can't duplicate, if P(n) and P(n+1) then P(all-n) [Peano, by Flew]
     Full Idea: 1) 0 is a number; 2) The successor of any number is a number; 3) No two numbers have the same successor; 4) 0 is not the successor of any number; 5) If P is true of 0, and if P is true of any number n and of its successor, P is true of every number.
     From: report of Giuseppe Peano (works [1890]) by Antony Flew - Pan Dictionary of Philosophy 'Peano'
     A reaction: Devised by Dedekind and proposed by Peano, these postulates were intended to avoid references to intuition in specifying the natural numbers. I wonder if they could define 'successor' without reference to 'number'.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
We can add Reflexion Principles to Peano Arithmetic, which assert its consistency or soundness [Halbach on Peano]
     Full Idea: Peano Arithmetic cannot derive its own consistency from within itself. But it can be strengthened by adding this consistency statement or by stronger axioms (particularly ones partially expressing soundness). These are known as Reflexion Principles.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 1.2) by Volker Halbach - Axiomatic Theories of Truth (2005 ver) 1.2
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Arithmetic can have even simpler logical premises than the Peano Axioms [Russell on Peano]
     Full Idea: Peano's premises are not the ultimate logical premises of arithmetic. Simpler premises and simpler primitive ideas are to be had by carrying our analysis on into symbolic logic.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], p.276) by Bertrand Russell - Regressive Method for Premises in Mathematics p.276
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
Indefeasibility does not imply infallibility [Grundmann]
     Full Idea: Infallibility does not follow from indefeasibility.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'Significance')
     A reaction: If very little evidence exists then this could clearly be the case. It is especially true of historical and archaeological evidence.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
Can a defeater itself be defeated? [Grundmann]
     Full Idea: Can the original justification of a belief be regained through a successful defeat of a defeater?
     From: Thomas Grundmann (Defeasibility Theory [2011], 'Defeater-Defs')
     A reaction: [Jäger 2005 addresses this] I would have thought the answer is yes. I aspire to coherent justifications, so I don't see justifications as a chain of defeat and counter-defeat, but as collective groups of support and challenge.
Simple reliabilism can't cope with defeaters of reliably produced beliefs [Grundmann]
     Full Idea: An unmodified reliabilism does not accommodate defeaters, and surely there can be defeaters against reliably produced beliefs?
     From: Thomas Grundmann (Defeasibility Theory [2011], 'Defeaters')
     A reaction: [He cites Bonjour 1980] Reliabilism has plenty of problems anyway, since a generally reliable process can obviously occasionally produce a bad result. 20:20 vision is not perfect vision. Internalist seem to like defeaters.
You can 'rebut' previous beliefs, 'undercut' the power of evidence, or 'reason-defeat' the truth [Grundmann]
     Full Idea: There are 'rebutting' defeaters against the truth of a previously justified belief, 'undercutting' defeaters against the power of the evidence, and 'reason-defeating' defeaters against the truth of the reason for the belief.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'How')
     A reaction: That is (I think) that you can defeat the background, the likelihood, or the truth. He cites Pollock 1986, and implies that these are standard distinctions about defeaters.
Defeasibility theory needs to exclude defeaters which are true but misleading [Grundmann]
     Full Idea: Advocates of the defeasibility theory have tried to exclude true pieces of information that are misleading defeaters.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'What')
     A reaction: He gives as an example the genuine news of a claim that the suspect has a twin.
Knowledge requires that there are no facts which would defeat its justification [Grundmann]
     Full Idea: The 'defeasibility theory' of knowledge claims that knowledge is only present if there are no facts that - if they were known - would be genuine defeaters of the relevant justification.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'What')
     A reaction: Something not right here. A genuine defeater would ensure the proposition was false, so it would simply fail the truth test. So we need a 'defeater' for a truth, which must therefore by definition be misleading. Many qualifications have to be invoked.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / b. Basic beliefs
'Moderate' foundationalism has basic justification which is defeasible [Grundmann]
     Full Idea: Theories that combine basic justification with the defeasibility of this justification are referred to as 'moderate' foundationalism.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'Significance')
     A reaction: I could be more sympathetic to this sort of foundationalism. But it begins to sound more like Neurath's boat (see Quine) than like Descartes' metaphor of building foundations.