Combining Philosophers

All the ideas for Thomas Grundmann, Michal Walicki and JP Burgess / G Rosen

unexpand these ideas     |    start again     |     specify just one area for these philosophers


41 ideas

3. Truth / H. Deflationary Truth / 2. Deflationary Truth
'True' is only occasionally useful, as in 'everything Fermat believed was true' [Burgess/Rosen]
     Full Idea: In the disquotational view of truth, what saves truth from being wholly redundant and so wholly useless, is mainly that it provides an ability to state generalisations like 'Everything Fermat believed was true'.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], I.A.2.c)
     A reaction: Sounds like the thin end of the wedge. Presumably we can infer that the first thing Fermat believed on his last Christmas Day was true.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal logic gives an account of metalogical possibility, not metaphysical possibility [Burgess/Rosen]
     Full Idea: If you want a logic of metaphysical possibility, the existing literature was originally developed to supply a logic of metalogical possibility, and still reflects its origins.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.B.3.b)
     A reaction: This is a warning shot (which I don't fully understand) to people like me, who were beginning to think they could fill their ontology with possibilia, which could then be incorporated into the wider account of logical thinking. Ah well...
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
The paradoxes are only a problem for Frege; Cantor didn't assume every condition determines a set [Burgess/Rosen]
     Full Idea: The paradoxes only seem to arise in connection with Frege's logical notion of extension or class, not Cantor's mathematical notion of set. Cantor never assumed that every condition determines a set.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.C.1.b)
     A reaction: This makes the whole issue a parochial episode in the history of philosophy, not a central question. Cantor favoured some sort of abstractionism (see Kit Fine on the subject).
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology implies that acceptance of entities entails acceptance of conglomerates [Burgess/Rosen]
     Full Idea: Mereology has ontological implications. The acceptance of some initial entities involves the acceptance of many further entities, arbitrary wholes having the entities as parts. It must accept conglomerates. Geometric points imply geometric regions.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.1.b)
     A reaction: Presumably without the wholes being entailed by the parts, there is no subject called 'mereology'. But if the conglomeration is unrestricted, there is not much left to be said. 'Restricted' composition (by nature?) sounds a nice line.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
A relation is either a set of sets of sets, or a set of sets [Burgess/Rosen]
     Full Idea: While in general a relation is taken to be a set of ordered pairs <u, v> = {{u}, {u, v}}, and hence a set of sets of sets, in special cases a relation can be represented by a set of sets.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.1.a)
     A reaction: [See book for their examples, which are <, symmetric, and arbitrary] The fact that a relation (or anything else) can be represented in a certain way should never ever be taken to mean that you now know what the thing IS.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
The paradoxes no longer seem crucial in critiques of set theory [Burgess/Rosen]
     Full Idea: Recent commentators have de-emphasised the set paradoxes because they play no prominent part in motivating the most articulate and active opponents of set theory, such as Kronecker (constructivism) or Brouwer (intuitionism), or Weyl (predicativism).
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.C.1.b)
     A reaction: This seems to be a sad illustration of the way most analytical philosophers have to limp along behind the logicians and mathematicians, arguing furiously about problems that have largely been abandoned.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
We should talk about possible existence, rather than actual existence, of numbers [Burgess/Rosen]
     Full Idea: The modal strategy for numbers is to replace assumptions about the actual existence of numbers by assumptions about the possible existence of numbers
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.B.3.a)
     A reaction: This seems to be quite a good way of dealing with very large numbers and infinities. It is not clear whether 5 is so regularly actualised that we must consider it as permanent, or whether it is just a prominent permanent possibility.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralism and nominalism are normally rivals, but might work together [Burgess/Rosen]
     Full Idea: Usually structuralism and nominalism are considered rivals. But structuralism can also be the first step in a strategy of nominalist reconstrual or paraphrase.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.0)
     A reaction: Hellman and later Chihara seem to be the main proponents of nominalist structuralism. My sympathies lie with this strategy. Are there objects at the nodes of the structure, or is the structure itself platonic? Mill offers a route.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number words became nouns around the time of Plato [Burgess/Rosen]
     Full Idea: The transition from using number words purely as adjectives to using them extensively as nouns has been traced to 'around the time of Plato'.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.C.2.a)
     A reaction: [The cite Kneale and Kneale VI,§2 for this] It is just too tempting to think that in fact Plato (and early Platonists) were totally responsible for this shift, since the whole reification of numbers seems to be inherently platonist.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Abstract/concrete is a distinction of kind, not degree [Burgess/Rosen]
     Full Idea: The distinction of abstract and concrete is one of kind and not degree.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], I.A.1.a)
     A reaction: I think I must agree with this. If there is a borderline, it would be in particulars that seem to have an abstract aspect to them. A horse involves the abstraction of being a horse, and it involves be one horse.
Much of what science says about concrete entities is 'abstraction-laden' [Burgess/Rosen]
     Full Idea: Much of what science says about concrete entities is 'abstraction-laden'.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.A.1.d)
     A reaction: Not just science. In ordinary conversation we continually refer to particulars using so-called 'universal' predicates and object-terms, which are presumably abstractions. 'I've just seen an elephant'.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
Mathematics has ascended to higher and higher levels of abstraction [Burgess/Rosen]
     Full Idea: In mathematics, since the beginning of the nineteenth century, there has been an ascent to higher and higher levels of abstraction.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.1.b)
     A reaction: I am interested in clarifying what this means, which might involve the common sense and psychological view of the matter, as well as some sort of formal definition in terms of equivalence (or whatever).
Abstraction is on a scale, of sets, to attributes, to type-formulas, to token-formulas [Burgess/Rosen]
     Full Idea: There is a scale of abstractness that leads downwards from sets through attributes to formulas as abstract types and on to formulas as abstract tokens.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.B.2.c)
     A reaction: Presumably the 'abstract tokens' at the bottom must have some interpretation, to support the system. Presumably one can keep going upwards, through sets of sets of sets.
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
Indefeasibility does not imply infallibility [Grundmann]
     Full Idea: Infallibility does not follow from indefeasibility.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'Significance')
     A reaction: If very little evidence exists then this could clearly be the case. It is especially true of historical and archaeological evidence.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
Can a defeater itself be defeated? [Grundmann]
     Full Idea: Can the original justification of a belief be regained through a successful defeat of a defeater?
     From: Thomas Grundmann (Defeasibility Theory [2011], 'Defeater-Defs')
     A reaction: [Jäger 2005 addresses this] I would have thought the answer is yes. I aspire to coherent justifications, so I don't see justifications as a chain of defeat and counter-defeat, but as collective groups of support and challenge.
Simple reliabilism can't cope with defeaters of reliably produced beliefs [Grundmann]
     Full Idea: An unmodified reliabilism does not accommodate defeaters, and surely there can be defeaters against reliably produced beliefs?
     From: Thomas Grundmann (Defeasibility Theory [2011], 'Defeaters')
     A reaction: [He cites Bonjour 1980] Reliabilism has plenty of problems anyway, since a generally reliable process can obviously occasionally produce a bad result. 20:20 vision is not perfect vision. Internalist seem to like defeaters.
You can 'rebut' previous beliefs, 'undercut' the power of evidence, or 'reason-defeat' the truth [Grundmann]
     Full Idea: There are 'rebutting' defeaters against the truth of a previously justified belief, 'undercutting' defeaters against the power of the evidence, and 'reason-defeating' defeaters against the truth of the reason for the belief.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'How')
     A reaction: That is (I think) that you can defeat the background, the likelihood, or the truth. He cites Pollock 1986, and implies that these are standard distinctions about defeaters.
Defeasibility theory needs to exclude defeaters which are true but misleading [Grundmann]
     Full Idea: Advocates of the defeasibility theory have tried to exclude true pieces of information that are misleading defeaters.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'What')
     A reaction: He gives as an example the genuine news of a claim that the suspect has a twin.
Knowledge requires that there are no facts which would defeat its justification [Grundmann]
     Full Idea: The 'defeasibility theory' of knowledge claims that knowledge is only present if there are no facts that - if they were known - would be genuine defeaters of the relevant justification.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'What')
     A reaction: Something not right here. A genuine defeater would ensure the proposition was false, so it would simply fail the truth test. So we need a 'defeater' for a truth, which must therefore by definition be misleading. Many qualifications have to be invoked.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / b. Basic beliefs
'Moderate' foundationalism has basic justification which is defeasible [Grundmann]
     Full Idea: Theories that combine basic justification with the defeasibility of this justification are referred to as 'moderate' foundationalism.
     From: Thomas Grundmann (Defeasibility Theory [2011], 'Significance')
     A reaction: I could be more sympathetic to this sort of foundationalism. But it begins to sound more like Neurath's boat (see Quine) than like Descartes' metaphor of building foundations.
18. Thought / E. Abstraction / 2. Abstracta by Selection
The old debate classified representations as abstract, not entities [Burgess/Rosen]
     Full Idea: The original debate was over abstract ideas; thus it was mental (or linguistic) representations that were classified as abstract or otherwise, and not the entities represented.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], I.A.1.b)
     A reaction: This seems to beg the question of whether there are any such entities. It is equally plausible to talk of the entities that are 'constructed', rather than 'represented'.
27. Natural Reality / C. Space / 2. Space
If space is really just a force-field, then it is a physical entity [Burgess/Rosen]
     Full Idea: According to many philosophical commentators, a force-field must be considered to be a physical entity, and as the distinction between space and the force-field may be considered to be merely verbal, space itself may be considered to be a physical entity.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.A.1)
     A reaction: The ontology becomes a bit odd if we cheerfully accept that space is physical, but then we can't give the same account of time. I'm not sure how time could be physical. What's it made of?