Combining Philosophers

All the ideas for Tim Bayne, Brad W. Hooker and Graham Priest

unexpand these ideas     |    start again     |     specify just one area for these philosophers


49 ideas

2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
     Full Idea: Priest says there is room for contradictions. He gives the example of someone in a doorway; is he in or out of the room. Given that in and out are mutually exclusive and exhaustive, and neither is the default, he seems to be both in and not in.
     From: report of Graham Priest (What is so bad about Contradictions? [1998]) by Roy Sorensen - Vagueness and Contradiction 4.3
     A reaction: Priest is a clever lad, but I don't think I can go with this. It just seems to be an equivocation on the word 'in' when applied to rooms. First tell me the criteria for being 'in' a room. What is the proposition expressed in 'he is in the room'?
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]
     Full Idea: Priest and Routley have developed paraconsistent relevant logic. 'Relevant' logics insist on there being some sort of connection between the premises and the conclusion of an argument. 'Paraconsistent' logics allow contradictions.
     From: report of Graham Priest (works [1998]) by Michčle Friend - Introducing the Philosophy of Mathematics 6.8
     A reaction: Relevance blocks the move of saying that a falsehood implies everything, which sounds good. The offer of paraconsistency is very wicked indeed, and they are very naughty boys for even suggesting it.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
5. Theory of Logic / L. Paradox / 1. Paradox
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
     Full Idea: A natural principle is the same kind of paradox will have the same kind of solution. Standardly Ramsey's first group are solved by denying the existence of some totality, and the second group are less clear. But denial of the groups sink both.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §5)
     A reaction: [compressed] This sums up the argument of Priest's paper, which is that it is Ramsey's division into two kinds (see Idea 13334) which is preventing us from getting to grips with the paradoxes. Priest, notoriously, just lives with them.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / b. König's paradox
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
     Full Idea: König: there are indefinable ordinals, and the least indefinable ordinal has just been defined in that very phrase. (Recall that something is definable iff there is a (non-indexical) noun-phrase that refers to it).
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: Priest makes great subsequent use of this one, but it feels like a card trick. 'Everything indefinable has now been defined' (by the subject of this sentence)? König, of course, does manage to pick out one particular object.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
     Full Idea: Berry: if we take 'x is a natural number definable in less than 19 words', we can generate a number which is and is not one of these numbers.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [not enough space to spell this one out in full]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / d. Richard's paradox
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
     Full Idea: Richard: φ(x) is 'x is a definable real number between 0 and 1' and ψ(x) is 'x is definable'. We can define a real by diagonalization so that it is not in x. It is and isn't in the set of reals.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [this isn't fully clear here because it is compressed]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
     Full Idea: Burali-Forti: φ(x) is 'x is an ordinal', and so w is the set of all ordinals, On; δ(x) is the least ordinal greater than every member of x (abbreviation: log(x)). The contradiction is that log(On)∈On and log(On)∉On.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
     Full Idea: Mirimanoff: φ(x) is 'x is well founded', so that w is the cumulative hierarchy of sets, V; &delta(x) is just the power set of x, P(x). If x⊆V, then V∈V and V∉V, since δ(V) is just V itself.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
     Full Idea: In the family of the Liar is the Knower Paradox, where φ(x) is 'x is known to be true', and there is a set of known things, Kn. By knowing a sentence is not in the known sentences, you know its truth.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [mostly my wording]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
     Full Idea: There are liar chains which fit the pattern of Transcendence and Closure, as can be seen with the simplest case of the Liar Pair.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [Priest gives full details] Priest's idea is that Closure is when a set is announced as complete, and Transcendence is when the set is forced to expand. He claims that the two keep coming into conflict.
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
How we evaluate evidence depends on our background beliefs [Bayne]
     Full Idea: A claim that might be very plausible given one set of background beliefs might be highly implausible when evaluated in the light of a different set of background beliefs.
     From: Tim Bayne (Thought: a very short introduction [2013], Ch.7)
Clifford's dictum seems to block our beliefs in morality, politics and philosophy [Bayne]
     Full Idea: Endorsing Clifford's dictum threatens to undermine our right to hold many of our most cherished beliefs about morality, politics, and philosophy, for these are domains in which it is notoriously difficult to secure consensus.
     From: Tim Bayne (Thought: a very short introduction [2013], Ch.7)
     A reaction: I would say that those beliefs are amenable to evidence, but the evidence is often highly generalised, which is what makes those subjects notoriously difficult. The existence of a convention is a sort of evidence.
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Physicalism correlates brain and mind, explains causation by thought, and makes nature continuous [Bayne]
     Full Idea: The motivations for physicalism about the mind are that it accounts for correlations between states of the brain and states of thought, ...that it accounts for the causal role of thoughts, ...and that it does justice to the continuity of nature.
     From: Tim Bayne (Thought: a very short introduction [2013], Ch.2)
     A reaction: [summary] That is a pretty good summary of why I am a physicalist about the mind. I take all other theories to be dead footnotes in the history of thought - unless someone can produce a really good new argument. Which they can't.
18. Thought / A. Modes of Thought / 8. Human Thought
Perception reveals what animals think, but humans can disengage thought from perception [Bayne]
     Full Idea: One striking feature of human thought involves our ability to disengage the focus of thought from that of our perceptual attention. ...To get a fix on what an animal is thinking about, one need only determine the object of its perceptual attention.
     From: Tim Bayne (Thought: a very short introduction [2013], Ch.4)
     A reaction: What happens when an animal closes its eyes, or stirs violently during sleep? I take the hallmark of human thought to be its multi-level character, and this offers nice evidence for that view. Doing philosophy while driving a car is very revealing.
Some people centre space on themselves; others centre space on the earth [Bayne]
     Full Idea: Egocentric conceptions of space employ a frame of reference that is focused on oneself; ...geocentric conceptions of space, by contrast, employ a frame of reference that is centred on the earth.
     From: Tim Bayne (Thought: a very short introduction [2013], Ch.5)
     A reaction: Famously, Europeans nearly always employ the egocentric conception, but many other cultures are geocentric. Thus the salt cellar is either 'to my left' or 'to the west'. In the latter view, everyone always knows their orientation (even indoors?).
18. Thought / B. Mechanics of Thought / 4. Language of Thought
The alternative to a language of thought is map-like or diagram-like thought [Bayne]
     Full Idea: One could think that the structure of thought has more in common with that of maps or diagrams, and is not particularly language-like.
     From: Tim Bayne (Thought: a very short introduction [2013], Ch.2)
     A reaction: It seems unwise to be ensnared by analogies on this one, since the phenomenon is buried deep. You can no more infer what goes on underneath than you can infer electrons from looking at trees?
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / i. Prescriptivism
Prescriptivism says 'ought' without commitment to act is insincere, or weakly used [Hooker,B]
     Full Idea: Prescriptivism holds that if you think one 'ought' to do a certain kind of act, and yet you are not committed to doing that act in the relevant circumstances, then you either spoke insincerely, or are using the word 'ought' in a weak sense.
     From: Brad W. Hooker (Prescriptivism [1995], p.640)
     A reaction: So that's an 'ought', but not a 'genuine ought', then? (No True Scotsman move). Someone ought to rescue that drowning child, but I can't be bothered.
23. Ethics / B. Contract Ethics / 2. Golden Rule
Universal moral judgements imply the Golden Rule ('do as you would be done by') [Hooker,B]
     Full Idea: Prescriptivity is especially important if moral judgements are universalizable, for then we can employ golden rule-style reasoning ('do as you would be done by').
     From: Brad W. Hooker (Prescriptivism [1995], p.640)
23. Ethics / E. Utilitarianism / 2. Ideal of Pleasure
Modern utilitarians value knowledge, friendship, autonomy, and achievement, as well as pleasure [Hooker,B]
     Full Idea: Most utilitarians now think that pleasure, even if construed widely, is not the only thing desirable in itself. ...Goods also include important knowledge, friendship, autonomy, achievement and so on.
     From: Brad W. Hooker (Rule Utilitarianism and Euthanasia [1997], 2)
     A reaction: That pleasure is desired is empirically verifiable, which certainly motivated Bentham. A string of other desirables each needs to be justified - but how? What would be the value of a 'friendship' if neither party got pleasure from it?
23. Ethics / E. Utilitarianism / 5. Rule Utilitarianism
Rule-utilitarians prevent things like torture, even on rare occasions when it seems best [Hooker,B]
     Full Idea: For rule-utilitarians acts of murder, torture and so on, can be impermissible even in rare cases where they really would produce better consequences than any alternative act.
     From: Brad W. Hooker (Rule Utilitarianism and Euthanasia [1997], 4)
     A reaction: It is basic to rule-utilitarianism that it trumps act-ulitilarianism, even when a particular act wins the utilitarian calculation. But that is hard to understand. Only long-term benefit could justify the rule - but that should win the calculation.
25. Social Practice / F. Life Issues / 2. Euthanasia
Euthanasia is active or passive, and voluntary, non-voluntary or involuntary [Hooker,B]
     Full Idea: Six types of euthanasia: 1) Active voluntary (knowing my wishes), 2) Active non-voluntary (not knowing my wishes), 3) Active involuntary (against my wishes), 4) Passive voluntary, 5) Passive non-voluntary, 6) Passive involuntary.
     From: Brad W. Hooker (Rule Utilitarianism and Euthanasia [1997], 5)
     A reaction: 'Active' is intervening, and 'passive' is not intervening. A helpful framework.
Euthanasia may not involve killing, so it is 'killing or not saving, out of concern for that person' [Hooker,B]
     Full Idea: Passive euthanasia is arguably not killing, and the death involved is often painful, so let us take the term 'euthanasia' to mean 'either killing or passing up opportunities to save someone, out of concern for that person'.
     From: Brad W. Hooker (Rule Utilitarianism and Euthanasia [1997], 1)
     A reaction: This sounds good, and easily settled, until you think concern for that person could have two different outcomes, depending on whether the criteria are those of the decider or of the patient. Think of religious decider and atheist patient, or vice versa.