Combining Philosophers

All the ideas for Weisberg/Needham/Hendry, Machamer,P/Darden,L/Craver,C and Stephen R. Grimm

unexpand these ideas     |    start again     |     specify just one area for these philosophers


27 ideas

7. Existence / B. Change in Existence / 2. Processes
Activities have place, rate, duration, entities, properties, modes, direction, polarity, energy and range [Machamer/Darden/Craver]
     Full Idea: Activities can be identified spatiotemporally, and individuated by rate, duration, and types of entity and property that engage in them. They also have modes of operation, directionality, polarity, energy requirements and a range.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: This is their attempt at making 'activity' one of the two central concepts of ontology, along with 'entity'. A helpful analysis. It just seems to be one way of slicing the cake.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
Penicillin causes nothing; the cause is what penicillin does [Machamer/Darden/Craver]
     Full Idea: It is not the penicillin that causes the pneumonia to disappear, but what the penicillin does.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3.1)
     A reaction: This is a very neat example for illustrating how we slip into 'entity' talk, when the reality we are addressing actually concerns processes. Without the 'what it does', penicillin can't participate in causation at all.
11. Knowledge Aims / A. Knowledge / 2. Understanding
We understand something by presenting its low-level entities and activities [Machamer/Darden/Craver]
     Full Idea: The intelligibility of a phenomenon consists in the mechanisms being portrayed in terms of a field's bottom out entities and activities.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: In other words, we understand complex things by reducing them to things we do understand. It would, though, be illuminating to see a nest of interconnected activities, even if we understood none of them.
Unlike knowledge, you can achieve understanding through luck [Grimm]
     Full Idea: It may be that understanding is compatible with luck, in a way that knowledge is not.
     From: Stephen R. Grimm (Understanding [2011], 3)
     A reaction: [He cites Kvanvig and Prichard] If so, then we cannot say that knowledge is a lesser type of understanding. If you ask a trusted person how a mechanism works, and they have a wild guess that is luckily right, you would then understand it.
'Grasping' a structure seems to be modal, because we must anticipate its behaviour [Grimm]
     Full Idea: 'Graspng' a structure would seem to bring into play something like a modal sense or ability, not just to register how things are, but also to anticipate how certain elements of the system would behave.
     From: Stephen R. Grimm (Understanding [2011], 2)
     A reaction: In the case of the chronology of some historical events, talking of 'grasping' or 'understanding' seems wrong because the facts are static and invariant. That seems to support the present idea. But you might 'understand' a pattern if you can reproduce it.
You may have 'weak' understanding, if by luck you can answer a set of 'why questions' [Grimm]
     Full Idea: There may be a 'weak' sense of understanding, where all you need to do is to be able to answer 'why questions' successfully, where one might have come by this ability in a lucky way.
     From: Stephen R. Grimm (Understanding [2011], 3)
     A reaction: We can see this point (in Idea 19691), but the idea that one could come by true complex understanding of something by purely lucky means is a bit absurd. Surely you would get one or two why questions wrong? 100%, just by luck?
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
The explanation is not the regularity, but the activity sustaining it [Machamer/Darden/Craver]
     Full Idea: It is not regularities that explain but the activities that sustain the regularities.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: Good, but we had better not characterise the 'activities' in terms of regularities.
14. Science / D. Explanation / 2. Types of Explanation / h. Explanations by function
Functions are not properties of objects, they are activities contributing to mechanisms [Machamer/Darden/Craver]
     Full Idea: It is common to speak of functions as properties 'had by' entities, …but they should rather be understood in terms of the activities by virtue of which entities contribute to the workings of a mechanism.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: I'm certainly quite passionately in favour of cutting down on describing the world almost entirely in terms of entities which have properties. An 'activity', though, is a bit of an elusive concept.
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Mechanisms are systems organised to produce regular change [Machamer/Darden/Craver]
     Full Idea: Mechanisms are entities and activities organized such that they are productive of regular change from start or set-up to finish or termination conditions.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: This is their initial formal definition of a mechanism. Note that a mere 'activity' can be included. Presumably the mechanism might have an outcome that was not the intended outcome. Does a random element disqualify it? Are hands mechanisms?
A mechanism explains a phenomenon by showing how it was produced [Machamer/Darden/Craver]
     Full Idea: To give a description of a mechanism for a phenomenon is to explain that phenomenon, i.e. to explain how it was produced.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: To 'show how' something happens needs a bit of precisification. It is probably analytic that 'showing how' means 'revealing the mechanism', though 'mechanism' then becomes the tricky concept.
Our account of mechanism combines both entities and activities [Machamer/Darden/Craver]
     Full Idea: We emphasise the activities in mechanisms. This is explicitly dualist. Substantivalists speak of entities with dispositions to act. Process ontologists reify activities and try to reduce entities to processes. We try to capture both intuitions.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: [A quotation of selected fragments] The problem here seems to be the raising of an 'activity' to a central role in ontology, when it doesn't seem to be primitive, and will typically be analysed in a variety of ways.
Descriptions of explanatory mechanisms have a bottom level, where going further is irrelevant [Machamer/Darden/Craver]
     Full Idea: Nested hierachical descriptions of mechanisms typically bottom out in lowest level mechanisms. …Bottoming out is relative …the explanation comes to an end, and description of lower-level mechanisms would be irrelevant.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 5.1)
     A reaction: This seems to me exactly the right story about mechanism, and it is a story I am associating with essentialism. The relevance is ties to understanding. The lower level is either fully understood, or totally baffling.
Thick mechanisms map whole reactions, and thin mechanism chart the steps [Weisberg/Needham/Hendry]
     Full Idea: In chemistry the 'thick' notion of a mechanism traces out positions of electrons and atomic cores, and correlates them with energies, showing the whole reaction. 'Thin' mechanisms focus on a discrete set of intermediate steps.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 5.1)
Using mechanisms as explanatory schemes began in chemistry [Weisberg/Needham/Hendry]
     Full Idea: The production of mechanisms as explanatory schemes finds its original home in chemistry.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 5.1)
     A reaction: This is as opposed to mechanisms in biology or neuroscience, which come later.
Mechanisms are not just push-pull systems [Machamer/Darden/Craver]
     Full Idea: One should not think of mechanisms as exclusively mechanical (push-pull) systems.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: The difficulty seems to be that you could broaden the concept of 'mechanism' indefinitely, so that it covered history, mathematics, populations, cultural change, and even mathematics. Where to stop?
14. Science / D. Explanation / 3. Best Explanation / b. Ultimate explanation
There are four types of bottom-level activities which will explain phenomena [Machamer/Darden/Craver]
     Full Idea: There are four bottom-out kinds of activities: geometrico-mechanical, electro-chemical, electro-magnetic and energetic. These are abstract means of production that can be fruitfully applied in particular cases to explain phenomena.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: I like that. It gives a nice core for a metaphysics for physicalists. I suspect that 'mechanical' can be reduced to something else, and that 'energetic' will disappear in the final story.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We can abstract by taking an exemplary case and ignoring the detail [Machamer/Darden/Craver]
     Full Idea: Abstractions may be constructed by taking an exemplary case or instance and removing detail.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 5.3)
     A reaction: I love 'removing detail'. That's it. Simple. I think this process is the basis of our whole capacity to formulate abstract concepts. Forget Frege - he's just describing the results of the process. How do we decide what is 'detail'? Essentialism!
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
Lavoisier's elements included four types of earth [Weisberg/Needham/Hendry]
     Full Idea: Four types of earth found a place on Lavoisier's list of elements.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.2)
     A reaction: A nice intermediate point between the ancient Greek and the modern view of earth.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
Laws of nature have very little application in biology [Machamer/Darden/Craver]
     Full Idea: The traditional notion of a law of nature has few, if any, applications in neurobiology or molecular biology.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3.2)
     A reaction: This is a simple and self-evident fact, and bad news for anyone who want to build their entire ontology around laws of nature. I take such a notion to be fairly empty, except as a convenient heuristic device.
27. Natural Reality / F. Chemistry / 1. Chemistry
'H2O' just gives the element proportions, not the microstructure [Weisberg/Needham/Hendry]
     Full Idea: 'H2O' is not a description of any microstructure. It is a compositional formula, describing the combining proportions of hydrogen and oxygen to make water.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.5)
Water molecules dissociate, and form large polymers, explaining its properties [Weisberg/Needham/Hendry]
     Full Idea: Water's structure cannot simply be described as a collection of individual molecules. There is a continual dissociation of H2O molecules into hydrogen and hydroxide ions; they former larger polymeric species, explaining conductivity, melting and boiling.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.5)
     A reaction: [compressed] If philosophers try to state the 'essence of water', they had better not be too glib about it.
It is unlikely that chemistry will ever be reduced to physics [Weisberg/Needham/Hendry]
     Full Idea: Most philosophers believe chemistry has not been reduced to physics nor is it likely to be.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6)
     A reaction: [Le Poidevin 2007 argues the opposite] That chemical features are actually metaphysically 'emergent' is a rare view, defended by Hendry. The general view is that the concepts are too different, and approximations render it hopeless.
Quantum theory won't tell us which structure a set of atoms will form [Weisberg/Needham/Hendry]
     Full Idea: Quantum mechanics cannot tell us why a given collection of atoms will adopt one molecular structure (and set of chemical properties) or the other.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6.1)
     A reaction: Presumably it the 'chance' process of how the atoms are thrown together.
For temperature to be mean kinetic energy, a state of equilibrium is also required [Weisberg/Needham/Hendry]
     Full Idea: Having a particular average kinetic energy is only a necessary condition for having a given temperature, not a sufficient one, because only gases at equilibrium have a well-defined temperature.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6.2)
     A reaction: If you try to pin it all down more precisely, the definition turns out to be circular.
Over 100,000,000 compounds have been discovered or synthesised [Weisberg/Needham/Hendry]
     Full Idea: There are well over 100,000,000 chemical compounds that have been discovered or synthesised, all of which have been formally characterised.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.3)
27. Natural Reality / F. Chemistry / 2. Modern Elements
Isotopes (such as those of hydrogen) can vary in their rates of chemical reaction [Weisberg/Needham/Hendry]
     Full Idea: There are chemically salient differences among the isotopes, best illustrated by the three isotopes of hydrogen: protium, deuterium and tritium, which show different rates of reaction, making heavy water poisonous where ordinary water is not.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.4)
     A reaction: [They cite Paul Needham 2008] The point is that the isotopes are the natural kinds, rather than the traditional elements. The view is unorthodox, but clearly makes a good point.
27. Natural Reality / F. Chemistry / 3. Periodic Table
Mendeleev systematised the elements, and also gave an account of their nature [Weisberg/Needham/Hendry]
     Full Idea: In addition to providing the systematization of the elements used in modern chemistry, Mendeleev also gave an account of the nature of the elements which informs contemporary philosophical understanding.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.3)