Combining Philosophers

All the ideas for William S. Jevons, James Joule and Stephen P. Schwartz

unexpand these ideas     |    start again     |     specify just one area for these philosophers


7 ideas

2. Reason / D. Definition / 1. Definitions
The new view is that "water" is a name, and has no definition [Schwartz,SP]
     Full Idea: Perhaps the modern view is best expressed as saying that "water" has no definition at all, at least in the traditional sense, and is a proper name of a specific substance.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: This assumes that proper names have no definitions, though I am not clear how we can grasp the name 'Aristotle' without some association of properties (human, for example) to go with it. We need a definition of 'definition'.
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
We refer to Thales successfully by name, even if all descriptions of him are false [Schwartz,SP]
     Full Idea: We can refer to Thales by using the name "Thales" even though perhaps the only description we can supply is false of him.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: It is not clear what we would be referring to if all of our descriptions (even 'Greek philosopher') were false. If an archaeologist finds just a scrap of stone with a name written on it, that is hardly a sufficient basis for successful reference.
The traditional theory of names says some of the descriptions must be correct [Schwartz,SP]
     Full Idea: The traditional theory of proper names entails that at least some combination of the things ordinarily believed of Aristotle are necessarily true of him.
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §III)
     A reaction: Searle endorses this traditional theory. Kripke and co. tried to dismiss it, but you can't. If all descriptions of Aristotle turned out to be false (it was actually the name of a Persian statue), our modern references would have been unsuccessful.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
I hold that algebra and number are developments of logic [Jevons]
     Full Idea: I hold that algebra is a highly developed logic, and number but logical discrimination.
     From: William S. Jevons (The Principles of Science [1879], p.156), quoted by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §15
     A reaction: Thus Frege shows that logicism was an idea that was in the air before he started writing. Riemann's geometry and Boole's logic presumably had some influence here.
18. Thought / C. Content / 8. Intension
The intension of "lemon" is the conjunction of properties associated with it [Schwartz,SP]
     Full Idea: The conjunction of properties associated with a term such as "lemon" is often called the intension of the term "lemon".
     From: Stephen P. Schwartz (Intro to Naming,Necessity and Natural Kinds [1977], §II)
     A reaction: The extension of "lemon" is the set of all lemons. At last, a clear explanation of the word 'intension'! The debate becomes clear - over whether the terms of a language are used in reference to ideas of properties (and substances?), or to external items.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Heat is a state of vibration, not a substance [Joule]
     Full Idea: We consider heat not as a substance but as a state of vibration.
     From: James Joule (works [1870]), quoted by Peter Watson - Convergence 01 'Nature's'
     A reaction: The puzzle is that giving accurate accounts of vibrations, heat and movement require a quantitative substance, energy. But all we have here is movement, and the denial of a substance. Energy is 'nature's currency system'.
Joule showed that energy converts to heat, and heat to energy [Joule, by Papineau]
     Full Idea: James Joule established the equivalence of heat and mechanical energy, in the sense of showing that a specific amount of heat will always be produced by the expenditure of a given amount of energy, and vice versa.
     From: report of James Joule (works [1870]) by David Papineau - Thinking about Consciousness App 4.2
     A reaction: This was a major step towards the law of conservation of energy.