Combining Philosophers

All the ideas for William Shakespeare, Oliver,A/Smiley,T and Geoffrey Gorham

unexpand these ideas     |    start again     |     specify just one area for these philosophers


23 ideas

1. Philosophy / D. Nature of Philosophy / 7. Despair over Philosophy
For there was never yet philosopher/ That could endure the toothache patiently [Shakespeare]
     Full Idea: For there was never yet philosopher/ That could endure the toothache patiently.
     From: William Shakespeare (Much Ado About Nothing [1600], V.i)
     A reaction: You can't argue with that. I do think that people who have studied philosophy at length are more likely to be 'philosophical' when faced with human misery, but only up to a point.
2. Reason / A. Nature of Reason / 1. On Reason
Good reasons must give way to better [Shakespeare]
     Full Idea: Good reasons must of force give way to better.
     From: William Shakespeare (Julius Caesar [1599], 4.3.205)
     A reaction: [Brutus to Cassius] This remark is an axiom of rationality. But, of course, reasons can come in groups, and three modest reasons may compete with one very good reason.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is usually derived from Separation, but it also seems to need Infinity [Oliver/Smiley]
     Full Idea: The empty set is usually derived via Zermelo's axiom of separation. But the axiom of separation is conditional: it requires the existence of a set in order to generate others as subsets of it. The original set has to come from the axiom of infinity.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: They charge that this leads to circularity, as Infinity depends on the empty set.
The empty set is something, not nothing! [Oliver/Smiley]
     Full Idea: Some authors need to be told loud and clear: if there is an empty set, it is something, not nothing.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: I'm inclined to think of a null set as a pair of brackets, so maybe that puts it into a metalanguage.
We don't need the empty set to express non-existence, as there are other ways to do that [Oliver/Smiley]
     Full Idea: The empty set is said to be useful to express non-existence, but saying 'there are no Us', or ¬∃xUx are no less concise, and certainly less roundabout.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
Maybe we can treat the empty set symbol as just meaning an empty term [Oliver/Smiley]
     Full Idea: Suppose we introduce Ω not as a term standing for a supposed empty set, but as a paradigm of an empty term, not standing for anything.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: This proposal, which they go on to explore, seems to mean that Ω (i.e. the traditional empty set symbol) is no longer part of set theory but is part of semantics.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The unit set may be needed to express intersections that leave a single member [Oliver/Smiley]
     Full Idea: Thomason says with no unit sets we couldn't call {1,2}∩{2,3} a set - but so what? Why shouldn't the intersection be the number 2? However, we then have to distinguish three different cases of intersection (common subset or member, or disjoint).
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 2.2)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
If you only refer to objects one at a time, you need sets in order to refer to a plurality [Oliver/Smiley]
     Full Idea: A 'singularist', who refers to objects one at a time, must resort to the language of sets in order to replace plural reference to members ('Henry VIII's wives') by singular reference to a set ('the set of Henry VIII's wives').
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: A simple and illuminating point about the motivation for plural reference. Null sets and singletons give me the creeps, so I would personally prefer to avoid set theory when dealing with ontology.
We can use plural language to refer to the set theory domain, to avoid calling it a 'set' [Oliver/Smiley]
     Full Idea: Plurals earn their keep in set theory, to answer Skolem's remark that 'in order to treat of 'sets', we must begin with 'domains' that are constituted in a certain way'. We can speak in the plural of 'the objects', not a 'domain' of objects.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: [Skolem 1922:291 in van Heijenoort] Zermelo has said that the domain cannot be a set, because every set belongs to it.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are true no matter what exists - but predicate calculus insists that something exists [Oliver/Smiley]
     Full Idea: Logical truths should be true no matter what exists, so true even if nothing exists. The classical predicate calculus, however, makes it logically true that something exists.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
If mathematics purely concerned mathematical objects, there would be no applied mathematics [Oliver/Smiley]
     Full Idea: If mathematics was purely concerned with mathematical objects, there would be no room for applied mathematics.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
     A reaction: Love it! Of course, they are using 'objects' in the rather Fregean sense of genuine abstract entities. I don't see why fictionalism shouldn't allow maths to be wholly 'pure', although we have invented fictions which actually have application.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Sets might either represent the numbers, or be the numbers, or replace the numbers [Oliver/Smiley]
     Full Idea: Identifying numbers with sets may mean one of three quite different things: 1) the sets represent the numbers, or ii) they are the numbers, or iii) they replace the numbers.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.2)
     A reaction: Option one sounds the most plausible to me. I will take numbers to be patterns embedded in nature, and sets are one way of presenting them in shorthand form, in order to bring out what is repeated.
14. Science / A. Basis of Science / 6. Falsification
If a theory is more informative it is less probable [Gorham]
     Full Idea: Popper's theory implies that more informative theories seem to be less probable.
     From: Geoffrey Gorham (Philosophy of Science [2009], 3)
     A reaction: [On p.75 Gorham replies to this objection] The point is that to be more testable they must be more detailed. He's not wrong. Theories are meant to be general, so they sweep up the details. But they need precise generalities and specifics.
Why abandon a theory if you don't have a better one? [Gorham]
     Full Idea: There is no sense in abandoning a successful theory if you have nothing to replace it with.
     From: Geoffrey Gorham (Philosophy of Science [2009], 2)
     A reaction: This is also a problem for infererence to the best explanation. What to do if your best explanation is not very good? The simple message is do not rush to dump a theory when faced with an anomaly.
14. Science / B. Scientific Theories / 1. Scientific Theory
Is Newton simpler with universal simultaneity, or Einstein simpler without absolute time? [Gorham]
     Full Idea: Is Newton's theory simpler than Einstein's, since there is only one relation of simultaneity in absolute time, or is Einstein's simpler because it dispenses with absolute time altogether?
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: A nice question, to which a good scientist might be willing to offer an answer. Since simultaneity is crucial but the existence of time is not, I would vote for Newton as the simpler.
Structural Realism says mathematical structures persist after theory rejection [Gorham]
     Full Idea: Structural Realists say that modern science achieves a true or 'truer' account of the world only with respect to its mathematical structure rather than its intrinsic qualities or nature. The structure carries over to new theories.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: At first glance I am unconvinced that when an old theory is replaced it neverthess contains some sort of 'mathematical structure' which endures and is worth preserving. No doubt Worrall, French and co have examples.
Structural Realists must show the mathematics is both crucial and separate [Gorham]
     Full Idea: Structural Realists must show that it is the mathematical aspects of the theories, not their content, that account for their success ….and that their structure and content can be clearly separated.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Their approach certainly seems to rely on mathematical types of science, so it presumably fits biology, geology and even astronomy less well.
14. Science / B. Scientific Theories / 3. Instrumentalism
Theories aren't just for organising present experience if they concern the past or future [Gorham]
     Full Idea: The strangeness of interpreting theories as mere tools for organising present experience is brought out clearly in sciences like cosmology and paleontology, which largely concern events in the remote past or future.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Not conclusive. An anti-realist has to interpret those sciences in terms of the current observations that are available.
For most scientists their concepts are not just useful, but are meant to be true and accurate [Gorham]
     Full Idea: The main difficulty with instrumentalism is its implausible account ot the meaning of theoretical claims and concepts. Most scientists take them to be straightforward attempts to describe the world. Most say they are useful because they are accurate.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Instrumentalism is seen as a Pragmatist view, and Dewey is cited.
14. Science / D. Explanation / 2. Types of Explanation / d. Consilience
Consilience makes the component sciences more likely [Gorham]
     Full Idea: The more unification and integration is found among the modern sciences, the less likely it seems it will have all been a dream.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: I believe this strongly. Ancient theories which were complex, wide ranging and false do not impress me. This is part of my coherence view of justification.
20. Action / B. Preliminaries of Action / 2. Willed Action / b. Volitionism
The cause of my action is in my will [Shakespeare]
     Full Idea: The cause is in my will. I will not come./That is enough to satisfy the senate./But for your private satisfaction,/Because I love you, I will let you know.
     From: William Shakespeare (Julius Caesar [1599], II.ii)
     A reaction: This asserts the purest form of volitionism, but then qualifies it, because Caesar's will has been influenced by his wife's dreams.
25. Social Practice / E. Policies / 1. War / b. Justice in war
Our obedience to the king erases any crimes we commit for him [Shakespeare]
     Full Idea: We know enough if we know we are the king's men. Our obedience to the king wipes the crime of it out of us.
     From: William Shakespeare (Henry V [1599]), quoted by Michael Walzer - Just and Unjust Wars 03
     A reaction: He is referring to the slaughter of the French servants behind the lines at Agincourt. A classic expression of 'I was just obeying orders', which was rejected at Nurnberg in 1946. Depends on the seriousness of the crime.
26. Natural Theory / A. Speculations on Nature / 1. Nature
Aristotelian physics has circular celestial motion and linear earthly motion [Gorham]
     Full Idea: Aristotelian physics assumed that celestial motion is naturally circular and eternal while terrestrial motion is naturally toward the center of the earth and final.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: The overthrow of this by Galileo and then Newton may have been the most dramatic revolution of the new science. It opened up the possibility of universal laws of physics.