Combining Philosophers

All the ideas for William W. Tait, Donald C. Williams and B Russell/AN Whitehead

unexpand these ideas     |    start again     |     specify just one area for these philosophers


38 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Analytic philosophy focuses too much on forms of expression, instead of what is actually said [Tait]
     Full Idea: The tendency to attack forms of expression rather than attempting to appreciate what is actually being said is one of the more unfortunate habits that analytic philosophy inherited from Frege.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IV)
     A reaction: The key to this, I say, is to acknowledge the existence of propositions (in brains). For example, this belief will make teachers more sympathetic to pupils who are struggling to express an idea, and verbal nit-picking becomes totally irrelevant.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
The best known axiomatization of PL is Whitehead/Russell, with four axioms and two rules [Russell/Whitehead, by Hughes/Cresswell]
     Full Idea: The best known axiomatization of PL is Whitehead/Russell. There are four axioms: (p∨p)→p, q→(p∨q), (p→q)→(q∨p), and (q→r)→((p∨q)→(p∨r)), plus Substitution and Modus Ponens rules.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by GE Hughes/M Cresswell - An Introduction to Modal Logic Ch.1
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The null set was doubted, because numbering seemed to require 'units' [Tait]
     Full Idea: The conception that what can be numbered is some object (including flocks of sheep) relative to a partition - a choice of unit - survived even in the late nineteenth century in the form of the rejection of the null set (and difficulties with unit sets).
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IX)
     A reaction: This old view can't be entirely wrong! Frege makes the point that if asked to count a pack of cards, you must decide whether to count cards, or suits, or pips. You may not need a 'unit', but you need a concept. 'Units' name concept-extensions nicely!
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
     Full Idea: The axiom of Reducibility ...is crucial in the reduction of classes to logic, ...and seems to be a quite legitimate logical notion for Russell.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 6.4
     A reaction: This is an unusual defence of the axiom, which is usually presumed to have been kicked into the long grass by Quine. If one could reduce classes to logic, that would destroy the opposition to logicism in a single neat coup.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
We can have a series with identical members [Tait]
     Full Idea: Why can't we have a series (as opposed to a linearly ordered set) all of whose members are identical, such as (a, a, a...,a)?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VII)
     A reaction: The question is whether the items order themselves, which presumably the natural numbers are supposed to do, or whether we impose the order (and length) of the series. What decides how many a's there are? Do we order, or does nature?
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro]
     Full Idea: Russell adduces two reasons against the extensional view of classes, namely the existence of the null class (which cannot very well be a collection), and the unit classes (which would have to be identical with their single elements).
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Structure and Ontology p.459
     A reaction: Gödel believes in the reality of classes. I have great sympathy with Russell, when people start to claim that sets are not just conveniences to help us think about things, but actual abstract entities. Is the singleton of my pencil is on this table?
We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead]
     Full Idea: Classes, so far as we introduce them, are merely symbolic or linguistic conveniences, not genuine objects.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.72), quoted by Penelope Maddy - Naturalism in Mathematics III.2
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Lewis's 'strict implication' preserved Russell's confusion of 'if...then' with implication [Quine on Russell/Whitehead]
     Full Idea: Russell call 'if...then' implication, when the material conditional is a much better account; C.I.Lewis (in founding modern modal logic) preserved Russell's confusion by creating 'strict implication', and called that implication.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Willard Quine - Reply to Professor Marcus p.177
     A reaction: [A compession of Quine's paragraph]. All of this assumes that logicians can give an accurate account of what if...then means, when ordinary usage is broad and vague. Strict implication seems to drain all the normal meaning out of 'if...then'.
Russell's implication means that random sentences imply one another [Lewis,CI on Russell/Whitehead]
     Full Idea: In Mr Russell's idea of implication, if twenty random sentences from a newspaper were put in a hat, and two of them drawn at random, one will certainly imply the other, and it is an even bet the implication will be mutual.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by C.I. Lewis - A Pragmatic Conception of the A Priori p.366
     A reaction: This sort of lament leads modern logicians to suggest 'relevance' as an important criterion. It certainly seems odd that so-called 'classical logic' should contain a principle so at variance with everyday reasoning.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Russell unusually saw logic as 'interpreted' (though very general, and neutral) [Russell/Whitehead, by Linsky,B]
     Full Idea: Russell did not view logic as an uninterpreted calculus awaiting interpretations [the modern view]. Rather, logic is a single 'interpreted' body of a priori truths, of propositions rather than sentence forms - but maximally general and topic neutral.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 1
     A reaction: This is the view which Wittgenstein challenged, saying logic is just conventional. Linsky claims that Russell's logicism is much more plausible, once you understand his view of logic.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
In 'Principia' a new abstract theory of relations appeared, and was applied [Russell/Whitehead, by Gödel]
     Full Idea: In 'Principia' a young science was enriched with a new abstract theory of relations, ..and not only Cantor's set theory but also ordinary arithmetic and the theory of measurement are treated from this abstract relational standpoint.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.448
     A reaction: I presume this is accounting for relations in terms of ordered sets.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Mathematics must be based on axioms, which are true because they are axioms, not vice versa [Tait, by Parsons,C]
     Full Idea: The axiomatic conception of mathematics is the only viable one. ...But they are true because they are axioms, in contrast to the view advanced by Frege (to Hilbert) that to be a candidate for axiomhood a statement must be true.
     From: report of William W. Tait (Intro to 'Provenance of Pure Reason' [2005], p.4) by Charles Parsons - Review of Tait 'Provenance of Pure Reason' §2
     A reaction: This looks like the classic twentieth century shift in the attitude to axioms. The Greek idea is that they must be self-evident truths, but the Tait-style view is that they are just the first steps in establishing a logical structure. I prefer the Greeks.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A real number is the class of rationals less than the number [Russell/Whitehead, by Shapiro]
     Full Idea: For Russell the real number 2 is the class of rationals less than 2 (i.e. 2/1). ...Notice that on this definition, real numbers are classes of rational numbers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Thinking About Mathematics 5.2
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / a. Defining numbers
Russell takes numbers to be classes, but then reduces the classes to numerical quantifiers [Russell/Whitehead, by Bostock]
     Full Idea: Although Russell takes numbers to be certain classes, his 'no-class' theory then eliminates all mention of classes in favour of the 'propositional functions' that define them; and in the case of the numbers these just are the numerical quantifiers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by David Bostock - Philosophy of Mathematics 9.B.4
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
'Principia' lacks a precise statement of the syntax [Gödel on Russell/Whitehead]
     Full Idea: What is missing, above all, in 'Principia', is a precise statement of the syntax of the formalism.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.448
Russell and Whitehead took arithmetic to be higher-order logic [Russell/Whitehead, by Hodes]
     Full Idea: Russell and Whitehead took arithmetic to be higher-order logic, ..and came close to identifying numbers with numerical quantifiers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.148
     A reaction: The point here is 'higher-order'.
Russell and Whitehead were not realists, but embraced nearly all of maths in logic [Russell/Whitehead, by Friend]
     Full Idea: Unlike Frege, Russell and Whitehead were not realists about mathematical objects, and whereas Frege thought that only arithmetic and analysis are branches of logic, they think the vast majority of mathematics (including geometry) is essentially logical.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.1
     A reaction: If, in essence, Descartes reduced geometry to algebra (by inventing co-ordinates), then geometry ought to be included. It is characteristic of Russell's hubris to want to embrace everything.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
The ramified theory of types used propositional functions, and covered bound variables [Russell/Whitehead, by George/Velleman]
     Full Idea: Russell and Whitehead's ramified theory of types worked not with sets, but with propositional functions (similar to Frege's concepts), with a more restrictive assignment of variables, insisting that bound, as well as free, variables be of lower type.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.3
     A reaction: I don't fully understand this (and no one seems much interested any more), but I think variables are a key notion, and there is something interesting going on here. I am intrigued by ordinary language which behaves like variables.
The Russell/Whitehead type theory was limited, and was not really logic [Friend on Russell/Whitehead]
     Full Idea: The Russell/Whitehead type theory reduces mathematics to a consistent founding discipline, but is criticised for not really being logic. They could not prove the existence of infinite sets, and introduced a non-logical 'axiom of reducibility'.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.6
     A reaction: To have reduced most of mathematics to a founding discipline sounds like quite an achievement, and its failure to be based in pure logic doesn't sound too bad. However, it seems to reduce some maths to just other maths.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
In 'Principia Mathematica', logic is exceeded in the axioms of infinity and reducibility, and in the domains [Bernays on Russell/Whitehead]
     Full Idea: In the system of 'Principia Mathematica', it is not only the axioms of infinity and reducibility which go beyond pure logic, but also the initial conception of a universal domain of individuals and of a domain of predicates.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913], p.267) by Paul Bernays - On Platonism in Mathematics p.267
     A reaction: This sort of criticism seems to be the real collapse of the logicist programme, rather than Russell's paradox, or Gödel's Incompleteness Theorems. It just became impossible to stick strictly to logic in the reduction of arithmetic.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Russell and Whitehead consider the paradoxes to indicate that we create mathematical reality [Russell/Whitehead, by Friend]
     Full Idea: Russell and Whitehead are particularly careful to avoid paradox, and consider the paradoxes to indicate that we create mathematical reality.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.1
     A reaction: This strikes me as quite a good argument. It is certainly counterintuitive that reality, and abstractions from reality, would contain contradictions. The realist view would be that we have paradoxes because we have misdescribed the facts.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
To avoid vicious circularity Russell produced ramified type theory, but Ramsey simplified it [Russell/Whitehead, by Shapiro]
     Full Idea: Russell insisted on the vicious circle principle, and thus rejected impredicative definitions, which resulted in an unwieldy ramified type theory, with the ad hoc axiom of reducibility. Ramsey's simpler theory was impredicative and avoided the axiom.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: Nowadays the theory of types seems to have been given up, possibly because it has no real attraction if it lacks the strict character which Russell aspired to.
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
A 'trope' is an abstract particular, the occurrence of an essence [Williams,DC]
     Full Idea: I shall divert the word 'trope' to stand for the abstract particular which is, so to speak, the occurrence of an essence.
     From: Donald C. Williams (On the Elements of Being: I [1953], p.115)
     A reaction: Thus tropes entered philosophical discussion. Presumably the precedent for an 'abstract particular' would be a particular occurrence of the number 7.
A world is completely constituted by its tropes and their connections [Williams,DC]
     Full Idea: Any possible world, and hence, of course, this one, is completely constituted by its tropes and connections of location and similarity.
     From: Donald C. Williams (On the Elements of Being: I [1953], p.116)
     A reaction: Note that Williams regularly referred to possible worlds in 1953. This is a full-blooded trope theory, which asserts that objects are bundles of tropes, so that both particulars and universals are ontologically taken care of.
'Socrates is wise' means a concurrence sum contains a member of a similarity set [Williams,DC]
     Full Idea: 'Socrates is wise' means that the concurrence sum (Socrates) includes a trope which is a member of the similarity set (Wisdom).
     From: Donald C. Williams (On the Elements of Being: I [1953], p.119)
     A reaction: Resemblance has to be taken as a basic (and presumably unanalysable) concept, which invites Russell's objection (Idea 4441).
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
An object is identical with itself, and no different indiscernible object can share that [Russell/Whitehead, by Adams,RM]
     Full Idea: Trivially, the Identity of Indiscernibles says that two individuals, Castor and Pollux, cannot have all properties in common. For Castor must have the properties of being identical with Castor and not being identical with Pollux, which Pollux can't share.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913], I p.57) by Robert Merrihew Adams - Primitive Thisness and Primitive Identity 2
     A reaction: I suspect that either the property of being identical with itself is quite vacuous, or it is parasytic on primitive identity, or it is the criterion which is actually used to define identity. Either way, I don't find this claim very illuminating.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Russell showed, through the paradoxes, that our basic logical intuitions are self-contradictory [Russell/Whitehead, by Gödel]
     Full Idea: By analyzing the paradoxes to which Cantor's set theory had led, ..Russell brought to light the amazing fact that our logical intuitions (concerning such notions as truth, concept, being, class) are self-contradictory.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.452
     A reaction: The main intuition that failed was, I take it, that every concept has an extension, that is, there are always objects which will or could fall under the concept.
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
The multiple relations theory says assertions about propositions are about their ingredients [Russell/Whitehead, by Linsky,B]
     Full Idea: The multiple relations theory of judgement proposes that assertions about propositions are dependent upon genuine facts involving belief and other attitude relations, subjects of those attitudes, and the constituents of the belief.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 7.2
     A reaction: This seems to require a commitment to universals (especially relations) with which we can be directly acquainted. I prefer propositions, but as mental entities, not platonic entities.
A judgement is a complex entity, of mind and various objects [Russell/Whitehead]
     Full Idea: When a judgement occurs, there is a certain complex entity, composed of the mind and the various objects of the judgement.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44)
     A reaction: This is Russell's multiple-relation theory of judgement, which replaced his earlier belief in unified propositions (now 'false abstractions'). He seems to have accepted Locke's view, that the act of judgement produces the unity.
The meaning of 'Socrates is human' is completed by a judgement [Russell/Whitehead]
     Full Idea: When I judge 'Socrates is human', the meaning is completed by the act of judging.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by Michael Morris - Guidebook to Wittgenstein's Tractatus
     A reaction: Morris says this is Russell's multiple-relations theory of judgement. The theory accompanies the rejection of the concept of the unified proposition. When I hear 'Socrates had a mole on his shoulder' I get the meaning without judging.
The multiple relation theory of judgement couldn't explain the unity of sentences [Morris,M on Russell/Whitehead]
     Full Idea: When Russell moved to his multiple relation theory of judgement …he then faced difficulties making sense of the unity of sentences.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913], p.44) by Michael Morris - Guidebook to Wittgenstein's Tractatus 3A
     A reaction: Roughly, he seems committed to saying that there is only unity if you think there is unity; there is no unity in a sentence prior to the act of judgement.
Only the act of judging completes the meaning of a statement [Russell/Whitehead]
     Full Idea: When I judge 'Socrates is human', the meaning is completed by the act of judging, and we no longer have an incomplete symbol.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap
     A reaction: Personally I would have thought that you needed to know the meaning properly before you could make the judgement, but then he is Bertrand Russell and I'm not.
18. Thought / E. Abstraction / 2. Abstracta by Selection
Abstraction is 'logical' if the sense and truth of the abstraction depend on the concrete [Tait]
     Full Idea: If the sense of a proposition about the abstract domain is given in terms of the corresponding proposition about the (relatively) concrete domain, ..and the truth of the former is founded upon the truth of the latter, then this is 'logical abstraction'.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: The 'relatively' in parentheses allows us to apply his idea to levels of abstraction, and not just to the simple jump up from the concrete. I think Tait's proposal is excellent, rather than purloining 'abstraction' for an internal concept within logic.
Cantor and Dedekind use abstraction to fix grammar and objects, not to carry out proofs [Tait]
     Full Idea: Although (in Cantor and Dedekind) abstraction does not (as has often been observed) play any role in their proofs, but it does play a role, in that it fixes the grammar, the domain of meaningful propositions, and so determining the objects in the proofs.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: [compressed] This is part of a defence of abstractionism in Cantor and Dedekind (see K.Fine also on the subject). To know the members of a set, or size of a domain, you need to know the process or function which created the set.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction may concern the individuation of the set itself, not its elements [Tait]
     Full Idea: A different reading of abstraction is that it concerns, not the individuating properties of the elements relative to one another, but rather the individuating properties of the set itself, for example the concept of what is its extension.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VIII)
     A reaction: If the set was 'objects in the room next door', we would not be able to abstract from the objects, but we might get to the idea of things being contain in things, or the concept of an object, or a room. Wrong. That's because they are objects... Hm.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Why should abstraction from two equipollent sets lead to the same set of 'pure units'? [Tait]
     Full Idea: Why should abstraction from two equipollent sets lead to the same set of 'pure units'?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996])
     A reaction: [Tait is criticising Cantor] This expresses rather better than Frege or Dummett the central problem with the abstractionist view of how numbers are derived from matching groups of objects.
If abstraction produces power sets, their identity should imply identity of the originals [Tait]
     Full Idea: If the power |A| is obtained by abstraction from set A, then if A is equipollent to set B, then |A| = |B|. But this does not imply that A = B. So |A| cannot just be A, taken in abstraction, unless that can identify distinct sets, ..or create new objects.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: An elegant piece of argument, which shows rather crucial facts about abstraction. We are then obliged to ask how abstraction can create an object or a set, if the central activity of abstraction is just ignoring certain features.
19. Language / D. Propositions / 3. Concrete Propositions
Propositions as objects of judgement don't exist, because we judge several objects, not one [Russell/Whitehead]
     Full Idea: A 'proposition', in the sense in which a proposition is supposed to be the object of a judgement, is a false abstraction, because a judgement has several objects, not one.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by Michael Morris - Guidebook to Wittgenstein's Tractatus 2E
     A reaction: This is the rejection of the 'Russellian' theory of propositions, in favour of his multiple-relations theory of judgement. But why don't the related objects add up to a proposition about a state of affairs?