Combining Philosophers

All the ideas for William W. Tait, JP Burgess / G Rosen and Peter Koellner

unexpand these ideas     |    start again     |     specify just one area for these philosophers


30 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Analytic philosophy focuses too much on forms of expression, instead of what is actually said [Tait]
     Full Idea: The tendency to attack forms of expression rather than attempting to appreciate what is actually being said is one of the more unfortunate habits that analytic philosophy inherited from Frege.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IV)
     A reaction: The key to this, I say, is to acknowledge the existence of propositions (in brains). For example, this belief will make teachers more sympathetic to pupils who are struggling to express an idea, and verbal nit-picking becomes totally irrelevant.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
'True' is only occasionally useful, as in 'everything Fermat believed was true' [Burgess/Rosen]
     Full Idea: In the disquotational view of truth, what saves truth from being wholly redundant and so wholly useless, is mainly that it provides an ability to state generalisations like 'Everything Fermat believed was true'.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], I.A.2.c)
     A reaction: Sounds like the thin end of the wedge. Presumably we can infer that the first thing Fermat believed on his last Christmas Day was true.
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal logic gives an account of metalogical possibility, not metaphysical possibility [Burgess/Rosen]
     Full Idea: If you want a logic of metaphysical possibility, the existing literature was originally developed to supply a logic of metalogical possibility, and still reflects its origins.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.B.3.b)
     A reaction: This is a warning shot (which I don't fully understand) to people like me, who were beginning to think they could fill their ontology with possibilia, which could then be incorporated into the wider account of logical thinking. Ah well...
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The null set was doubted, because numbering seemed to require 'units' [Tait]
     Full Idea: The conception that what can be numbered is some object (including flocks of sheep) relative to a partition - a choice of unit - survived even in the late nineteenth century in the form of the rejection of the null set (and difficulties with unit sets).
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IX)
     A reaction: This old view can't be entirely wrong! Frege makes the point that if asked to count a pack of cards, you must decide whether to count cards, or suits, or pips. You may not need a 'unit', but you need a concept. 'Units' name concept-extensions nicely!
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naďve logical sets
The paradoxes are only a problem for Frege; Cantor didn't assume every condition determines a set [Burgess/Rosen]
     Full Idea: The paradoxes only seem to arise in connection with Frege's logical notion of extension or class, not Cantor's mathematical notion of set. Cantor never assumed that every condition determines a set.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.C.1.b)
     A reaction: This makes the whole issue a parochial episode in the history of philosophy, not a central question. Cantor favoured some sort of abstractionism (see Kit Fine on the subject).
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
We can have a series with identical members [Tait]
     Full Idea: Why can't we have a series (as opposed to a linearly ordered set) all of whose members are identical, such as (a, a, a...,a)?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VII)
     A reaction: The question is whether the items order themselves, which presumably the natural numbers are supposed to do, or whether we impose the order (and length) of the series. What decides how many a's there are? Do we order, or does nature?
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology implies that acceptance of entities entails acceptance of conglomerates [Burgess/Rosen]
     Full Idea: Mereology has ontological implications. The acceptance of some initial entities involves the acceptance of many further entities, arbitrary wholes having the entities as parts. It must accept conglomerates. Geometric points imply geometric regions.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.1.b)
     A reaction: Presumably without the wholes being entailed by the parts, there is no subject called 'mereology'. But if the conglomeration is unrestricted, there is not much left to be said. 'Restricted' composition (by nature?) sounds a nice line.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
A relation is either a set of sets of sets, or a set of sets [Burgess/Rosen]
     Full Idea: While in general a relation is taken to be a set of ordered pairs <u, v> = {{u}, {u, v}}, and hence a set of sets of sets, in special cases a relation can be represented by a set of sets.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.1.a)
     A reaction: [See book for their examples, which are <, symmetric, and arbitrary] The fact that a relation (or anything else) can be represented in a certain way should never ever be taken to mean that you now know what the thing IS.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Mathematics must be based on axioms, which are true because they are axioms, not vice versa [Tait, by Parsons,C]
     Full Idea: The axiomatic conception of mathematics is the only viable one. ...But they are true because they are axioms, in contrast to the view advanced by Frege (to Hilbert) that to be a candidate for axiomhood a statement must be true.
     From: report of William W. Tait (Intro to 'Provenance of Pure Reason' [2005], p.4) by Charles Parsons - Review of Tait 'Provenance of Pure Reason' §2
     A reaction: This looks like the classic twentieth century shift in the attitude to axioms. The Greek idea is that they must be self-evident truths, but the Tait-style view is that they are just the first steps in establishing a logical structure. I prefer the Greeks.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
The paradoxes no longer seem crucial in critiques of set theory [Burgess/Rosen]
     Full Idea: Recent commentators have de-emphasised the set paradoxes because they play no prominent part in motivating the most articulate and active opponents of set theory, such as Kronecker (constructivism) or Brouwer (intuitionism), or Weyl (predicativism).
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.C.1.b)
     A reaction: This seems to be a sad illustration of the way most analytical philosophers have to limp along behind the logicians and mathematicians, arguing furiously about problems that have largely been abandoned.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
We should talk about possible existence, rather than actual existence, of numbers [Burgess/Rosen]
     Full Idea: The modal strategy for numbers is to replace assumptions about the actual existence of numbers by assumptions about the possible existence of numbers
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.B.3.a)
     A reaction: This seems to be quite a good way of dealing with very large numbers and infinities. It is not clear whether 5 is so regularly actualised that we must consider it as permanent, or whether it is just a prominent permanent possibility.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralism and nominalism are normally rivals, but might work together [Burgess/Rosen]
     Full Idea: Usually structuralism and nominalism are considered rivals. But structuralism can also be the first step in a strategy of nominalist reconstrual or paraphrase.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.0)
     A reaction: Hellman and later Chihara seem to be the main proponents of nominalist structuralism. My sympathies lie with this strategy. Are there objects at the nodes of the structure, or is the structure itself platonic? Mill offers a route.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number words became nouns around the time of Plato [Burgess/Rosen]
     Full Idea: The transition from using number words purely as adjectives to using them extensively as nouns has been traced to 'around the time of Plato'.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.C.2.a)
     A reaction: [The cite Kneale and Kneale VI,§2 for this] It is just too tempting to think that in fact Plato (and early Platonists) were totally responsible for this shift, since the whole reification of numbers seems to be inherently platonist.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Abstract/concrete is a distinction of kind, not degree [Burgess/Rosen]
     Full Idea: The distinction of abstract and concrete is one of kind and not degree.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], I.A.1.a)
     A reaction: I think I must agree with this. If there is a borderline, it would be in particulars that seem to have an abstract aspect to them. A horse involves the abstraction of being a horse, and it involves be one horse.
Much of what science says about concrete entities is 'abstraction-laden' [Burgess/Rosen]
     Full Idea: Much of what science says about concrete entities is 'abstraction-laden'.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.A.1.d)
     A reaction: Not just science. In ordinary conversation we continually refer to particulars using so-called 'universal' predicates and object-terms, which are presumably abstractions. 'I've just seen an elephant'.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
Mathematics has ascended to higher and higher levels of abstraction [Burgess/Rosen]
     Full Idea: In mathematics, since the beginning of the nineteenth century, there has been an ascent to higher and higher levels of abstraction.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.1.b)
     A reaction: I am interested in clarifying what this means, which might involve the common sense and psychological view of the matter, as well as some sort of formal definition in terms of equivalence (or whatever).
Abstraction is on a scale, of sets, to attributes, to type-formulas, to token-formulas [Burgess/Rosen]
     Full Idea: There is a scale of abstractness that leads downwards from sets through attributes to formulas as abstract types and on to formulas as abstract tokens.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.B.2.c)
     A reaction: Presumably the 'abstract tokens' at the bottom must have some interpretation, to support the system. Presumably one can keep going upwards, through sets of sets of sets.
18. Thought / E. Abstraction / 2. Abstracta by Selection
Abstraction is 'logical' if the sense and truth of the abstraction depend on the concrete [Tait]
     Full Idea: If the sense of a proposition about the abstract domain is given in terms of the corresponding proposition about the (relatively) concrete domain, ..and the truth of the former is founded upon the truth of the latter, then this is 'logical abstraction'.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: The 'relatively' in parentheses allows us to apply his idea to levels of abstraction, and not just to the simple jump up from the concrete. I think Tait's proposal is excellent, rather than purloining 'abstraction' for an internal concept within logic.
Cantor and Dedekind use abstraction to fix grammar and objects, not to carry out proofs [Tait]
     Full Idea: Although (in Cantor and Dedekind) abstraction does not (as has often been observed) play any role in their proofs, but it does play a role, in that it fixes the grammar, the domain of meaningful propositions, and so determining the objects in the proofs.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: [compressed] This is part of a defence of abstractionism in Cantor and Dedekind (see K.Fine also on the subject). To know the members of a set, or size of a domain, you need to know the process or function which created the set.
The old debate classified representations as abstract, not entities [Burgess/Rosen]
     Full Idea: The original debate was over abstract ideas; thus it was mental (or linguistic) representations that were classified as abstract or otherwise, and not the entities represented.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], I.A.1.b)
     A reaction: This seems to beg the question of whether there are any such entities. It is equally plausible to talk of the entities that are 'constructed', rather than 'represented'.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction may concern the individuation of the set itself, not its elements [Tait]
     Full Idea: A different reading of abstraction is that it concerns, not the individuating properties of the elements relative to one another, but rather the individuating properties of the set itself, for example the concept of what is its extension.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VIII)
     A reaction: If the set was 'objects in the room next door', we would not be able to abstract from the objects, but we might get to the idea of things being contain in things, or the concept of an object, or a room. Wrong. That's because they are objects... Hm.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Why should abstraction from two equipollent sets lead to the same set of 'pure units'? [Tait]
     Full Idea: Why should abstraction from two equipollent sets lead to the same set of 'pure units'?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996])
     A reaction: [Tait is criticising Cantor] This expresses rather better than Frege or Dummett the central problem with the abstractionist view of how numbers are derived from matching groups of objects.
If abstraction produces power sets, their identity should imply identity of the originals [Tait]
     Full Idea: If the power |A| is obtained by abstraction from set A, then if A is equipollent to set B, then |A| = |B|. But this does not imply that A = B. So |A| cannot just be A, taken in abstraction, unless that can identify distinct sets, ..or create new objects.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: An elegant piece of argument, which shows rather crucial facts about abstraction. We are then obliged to ask how abstraction can create an object or a set, if the central activity of abstraction is just ignoring certain features.
27. Natural Reality / C. Space / 2. Space
If space is really just a force-field, then it is a physical entity [Burgess/Rosen]
     Full Idea: According to many philosophical commentators, a force-field must be considered to be a physical entity, and as the distinction between space and the force-field may be considered to be merely verbal, space itself may be considered to be a physical entity.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.A.1)
     A reaction: The ontology becomes a bit odd if we cheerfully accept that space is physical, but then we can't give the same account of time. I'm not sure how time could be physical. What's it made of?