Combining Philosophers

All the ideas for Xenophanes, Crispin Wright and Alain Badiou

unexpand these ideas     |    start again     |     specify just one area for these philosophers


74 ideas

1. Philosophy / C. History of Philosophy / 1. History of Philosophy
We can only learn from philosophers of the past if we accept the risk of major misrepresentation [Wright,C]
     Full Idea: We can learn from the work of philosophers of other periods only if we are prepared to run the risk of radical and almost inevitable misrepresentation of his thought.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Pref)
     A reaction: This sounds about right, and a motto for my own approach to Aristotle and Leibniz, but I see the effort as more collaborative than this suggests. Professional specialists in older philosophers are a vital part of the team. Read them!
1. Philosophy / C. History of Philosophy / 5. Modern Philosophy / c. Modern philosophy mid-period
In ontology, logic dominated language, until logic was mathematized [Badiou]
     Full Idea: From Aristotle to Hegel, logic was the philosophical category of ontology's dominion over language. The mathematization of logic has authorized language to become that which seizes philosophy for itself.
     From: Alain Badiou (Briefings on Existence [1998], 8)
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Philosophy aims to reveal the grandeur of mathematics [Badiou]
     Full Idea: Philosophy's role consists in informing mathematics of its own speculative grandeur.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.11)
     A reaction: Revealing the grandeur of something sounds more like a rhetorical than a rational exercise. How would you reveal the grandeur of a sunset to someone?
1. Philosophy / D. Nature of Philosophy / 8. Humour
The female body, when taken in its entirety, is the Phallus itself [Badiou]
     Full Idea: The female body, when taken in its entirety, is the Phallus itself.
     From: Alain Badiou (Briefings on Existence [1998])
     A reaction: Too good to pass over, too crazy to file sensibly, too creepy to have been filed under humour, my candidate for the weirdest remark I have ever read in a serious philosopher, but no doubt if you read Lacan etc for long enough it looks deeply wise.
1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
Philosophy has been relieved of physics, cosmology, politics, and now must give up ontology [Badiou]
     Full Idea: Philosophy has been released from, even relieved of, physics, cosmology, and politics, as well as many other things. It is important for it to be released from ontology per se.
     From: Alain Badiou (Briefings on Existence [1998], 3)
     A reaction: A startling proposal, for anyone who thought that ontology was First Philosophy. Badiou wants to hand ontology over to mathematicians, but I am unclear what remains for the philosophers to do.
2. Reason / A. Nature of Reason / 4. Aims of Reason
Consensus is the enemy of thought [Badiou]
     Full Idea: Consensus is the enemy of thought.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: A nice slogan for bringing Enlightenment optimists to a halt. I am struck. Do I allow my own thinking to always be diverted towards something which might result in a consensus? Do I actually (horror!) prefer consensus to truth?
2. Reason / C. Styles of Reason / 1. Dialectic
The best way to understand a philosophical idea is to defend it [Wright,C]
     Full Idea: The most productive way in which to attempt an understanding of any philosophical idea is to work on its defence.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: Very nice. The key point is that this brings greater understanding than working on attacking an idea, which presumably has the dangers of caricature, straw men etc. It is the Socratic insight that dialectic is the route to wisdom.
2. Reason / D. Definition / 7. Contextual Definition
The attempt to define numbers by contextual definition has been revived [Wright,C, by Fine,K]
     Full Idea: Frege gave up on the attempt to introduce natural numbers by contextual definition, but the project has been revived by neo-logicists.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction II
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
There is 'transivity' iff membership ∈ also means inclusion ⊆ [Badiou]
     Full Idea: 'Transitivity' signifies that all of the elements of the set are also parts of the set. If you have α∈Β, you also have α⊆Β. This correlation of membership and inclusion gives a stability which is the sets' natural being.
     From: Alain Badiou (Briefings on Existence [1998], 11)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice must accept an indeterminate, indefinable, unconstructible set [Badiou]
     Full Idea: The axiom of choice actually amounts to admitting an absolutely indeterminate infinite set whose existence is asserted albeit remaining linguistically indefinable. On the other hand, as a process, it is unconstructible.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: If only constructible sets are admitted (see 'V = L') then there is a contradiction.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Topos theory explains the plurality of possible logics [Badiou]
     Full Idea: Topos theory explains the plurality of possible logics.
     From: Alain Badiou (Briefings on Existence [1998], 14)
     A reaction: This will because logic will have a distinct theory within each 'topos'.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic is a mathematical account of a universe of relations [Badiou]
     Full Idea: Logic should first and foremost be a mathematical thought of what a universe of relations is.
     From: Alain Badiou (Briefings on Existence [1998], 14)
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An expression refers if it is a singular term in some true sentences [Wright,C, by Dummett]
     Full Idea: For Wright, an expression refers to an object if it fulfils the 'syntactic role' of a singular term, and if we have fixed the truth-conditions of sentences containing it in such a way that some of them come out true.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.15
     A reaction: Much waffle is written about reference, and it is nice to hear of someone actually trying to state the necessary and sufficient conditions for reference to be successful. So is it possible for 'the round square' to ever refer? '...is impossible to draw'
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
In mathematics, if a problem can be formulated, it will eventually be solved [Badiou]
     Full Idea: Only in mathematics can one unequivocally maintain that if thought can formulate a problem, it can and will solve it, regardless of how long it takes.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.17)
     A reaction: I hope this includes proving the Continuum Hypothesis, and Goldbach's Conjecture. It doesn't seem quite true, but it shows why philosophers of a rationalist persuasion are drawn to mathematics.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are for measuring and for calculating (and the two must be consistent) [Badiou]
     Full Idea: Number is an instance of measuring (distinguishing the more from the less, and calibrating data), ..and a figure for calculating (one counts with numbers), ..and it ought to be a figure of consistency (the compatibility of order and calculation).
     From: Alain Badiou (Briefings on Existence [1998], 11)
There is no single unified definition of number [Badiou]
     Full Idea: Apparently - and this is quite unlike old Greek times - there is no single unified definition of number.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Number theory aims at the essence of natural numbers, giving their nature, and the epistemology [Wright,C]
     Full Idea: In the Fregean view number theory is a science, aimed at those truths furnished by the essential properties of zero and its successors. The two broad question are then the nature of the objects, and the epistemology of those facts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [compressed] I pounce on the word 'essence' here (my thing). My first question is about the extent to which the natural numbers all have one generic essence, and the extent to which they are individuals (bless their little cotton socks).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each type of number has its own characteristic procedure of introduction [Badiou]
     Full Idea: There is a heterogeneity of introductory procedures of different classical number types: axiomatic for natural numbers, structural for ordinals, algebraic for negative and rational numbers, topological for reals, mainly geometric for complex numbers.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Must we accept numbers as existing when they no longer consist of units? [Badiou]
     Full Idea: Do we have to confer existence on numbers whose principle is to no longer consist of units?
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: This very nicely expresses what seems to me perhaps the most important question in the philosophy of mathematics. I am reluctant to accept such 'unitless' numbers, but I then feel hopelessly old-fashioned and naďve. What to do?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
     Full Idea: Someone could be clear about number identities, and distinguish numbers from other things, without conceiving them as ordered in a progression at all. The point of them would be to make comparisons between sizes of groups.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: Hm. Could you grasp size if you couldn't grasp which of two groups was the bigger? What's the point of noting that I have ten pounds and you only have five, if you don't realise that I have more than you? You could have called them Caesar and Brutus.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Instances of a non-sortal concept can only be counted relative to a sortal concept [Wright,C]
     Full Idea: The invitation to number the instances of some non-sortal concept is intelligible only if it is relativised to a sortal.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: I take this to be an essentially Fregean idea, as when we count the boots when we have decided whether they fall under the concept 'boot' or the concept 'pair'. I also take this to be the traditional question 'what units are you using'?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Mathematics shows that thinking is not confined to the finite [Badiou]
     Full Idea: Mathematics teaches us that there is no reason whatsoever to confne thinking within the ambit of finitude.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.19)
     A reaction: This would perhaps make Cantor the greatest thinker who ever lived. It is an exhilarating idea, but we should ward the reader against romping of into unrestrained philosophical thought about infinities. You may be jumping without your Cantorian parachute.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The undecidability of the Continuum Hypothesis may have ruined or fragmented set theory [Badiou]
     Full Idea: As we have known since Paul Cohen's theorem, the Continuum Hypothesis is intrinsically undecidable. Many believe Cohen's discovery has driven the set-theoretic project into ruin, or 'pluralized' what was once presented as a unified construct.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: Badiou thinks the theorem completes set theory, by (roughly) finalising its map.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Wright thinks Hume's Principle is more fundamental to cardinals than the Peano Axioms are [Wright,C, by Heck]
     Full Idea: Wright is claiming that HP is a special sort of truth in some way: it is supposed to be the fundamental truth about cardinality; ...in particular, HP is supposed to be more fundamental, in some sense than the Dedekind-Peano axioms.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Heck notes that although PA can be proved from HP, HP can be proven from PA plus definitions, so direction of proof won't show fundamentality. He adds that Wright thinks HP is 'more illuminating'.
There are five Peano axioms, which can be expressed informally [Wright,C]
     Full Idea: Informally, Peano's axioms are: 0 is a number, numbers have a successor, different numbers have different successors, 0 isn't a successor, properties of 0 which carry over to successors are properties of all numbers.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: Each statement of the famous axioms is slightly different from the others, and I have reworded Wright to fit him in. Since the last one (the 'induction axiom') is about properties, it invites formalization in second-order logic.
Number truths are said to be the consequence of PA - but it needs semantic consequence [Wright,C]
     Full Idea: The intuitive proposal is the essential number theoretic truths are precisely the logical consequences of the Peano axioms, ...but the notion of consequence is a semantic one...and it is not obvious that we possess a semantic notion of the requisite kind.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: (Not sure I understand this, but it is his starting point for rejecting PA as the essence of arithmetic).
What facts underpin the truths of the Peano axioms? [Wright,C]
     Full Idea: We incline to think of the Peano axioms as truths of some sort; so there has to be a philosophical question how we ought to conceive of the nature of the facts which make those statements true.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [He also asks about how we know the truths]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Sameness of number is fundamental, not counting, despite children learning that first [Wright,C]
     Full Idea: We teach our children to count, sometimes with no attempt to explain what the sounds mean. Doubtless it is this habit which makes it so natural to think of the number series as fundamental. Frege's insight is that sameness of number is fundamental.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: 'When do children understand number?' rather than when they can recite numerals. I can't make sense of someone being supposed to understand number without a grasp of which numbers are bigger or smaller. To make 13='15' do I add or subtract?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
We derive Hume's Law from Law V, then discard the latter in deriving arithmetic [Wright,C, by Fine,K]
     Full Idea: Wright says the Fregean arithmetic can be broken down into two steps: first, Hume's Law may be derived from Law V; and then, arithmetic may be derived from Hume's Law without any help from Law V.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction I.4
     A reaction: This sounds odd if Law V is false, but presumably Hume's Law ends up as free-standing. It seems doubtful whether the resulting theory would count as logic.
Frege has a good system if his 'number principle' replaces his basic law V [Wright,C, by Friend]
     Full Idea: Wright proposed removing Frege's basic law V (which led to paradox), replacing it with Frege's 'number principle' (identity of numbers is one-to-one correspondence). The new system is formally consistent, and the Peano axioms can be derived from it.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.7
     A reaction: The 'number principle' is also called 'Hume's principle'. This idea of Wright's resurrected the project of logicism. The jury is ought again... Frege himself questioned whether the number principle was a part of logic, which would be bad for 'logicism'.
Wright says Hume's Principle is analytic of cardinal numbers, like a definition [Wright,C, by Heck]
     Full Idea: Wright intends the claim that Hume's Principle (HP) embodies an explanation of the concept of number to imply that it is analytic of the concept of cardinal number - so it is an analytic or conceptual truth, much as a definition would be.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Boolos is quoted as disagreeing. Wright is claiming a fundamental truth. Boolos says something can fix the character of something (as yellow fixes bananas), but that doesn't make it 'fundamental'. I want to defend 'fundamental'.
It is 1-1 correlation of concepts, and not progression, which distinguishes natural number [Wright,C]
     Full Idea: What is fundamental to possession of any notion of natural number at all is not the knowledge that the numbers may be arrayed in a progression but the knowledge that they are identified and distinguished by reference to 1-1 correlation among concepts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: My question is 'what is the essence of number?', and my inclination to disagree with Wright on this point suggests that the essence of number is indeed caught in the Dedekind-Peano axioms. But what of infinite numbers?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
     Full Idea: Identifying numbers with extensions will not solve the Caesar problem for numbers unless we have already solved the Caesar problem for extensions.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
If mathematics is a logic of the possible, then questions of existence are not intrinsic to it [Badiou]
     Full Idea: If mathematics is a logic of the possible, then questions of existence are not intrinsic to it (as they are for the Platonist).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See also Idea 12328. I file this to connect it with Hellman's modal (and nominalist) version of structuralism. Could it be that mathematics and modal logic are identical?
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Number platonism says that natural number is a sortal concept [Wright,C]
     Full Idea: Number-theoretic platonism is just the thesis that natural number is a sortal concept.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: See Crispin Wright on sortals to expound this. An odd way to express platonism, but he is presenting the Fregean version of it.
Platonists like axioms and decisions, Aristotelians like definitions, possibilities and logic [Badiou]
     Full Idea: A Platonist's interest focuses on axioms in which the decision of thought is played out, where an Aristotelian or Leibnizian interest focuses on definitions laying out the representation of possibilities (...and the essence of mathematics is logic).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See Idea 12323 for the significance of the Platonist approach. So logicism is an Aristotelian project? Frege is not a true platonist? I like the notion of 'the representation of possibilities', so will vote for the Aristotelians, against Badiou.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
     Full Idea: We may not be able to settle whether some general form of empiricism is correct independently of natural numbers. It might be precisely our grasp of the abstract sortal, natural number, which shows the hypothesis of empiricism to be wrong.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: A nice turning of the tables. In the end only coherence decides these things. You may accept numbers and reject empiricism, and then find you have opened the floodgates for abstracta. Excessive floodgates, or blockages of healthy streams?
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Treating numbers adjectivally is treating them as quantifiers [Wright,C]
     Full Idea: Treating numbers adjectivally is, in effect, treating the numbers as quantifiers. Frege observes that we can always parse out any apparently adjectival use of a number word in terms of substantival use.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: The immediate response to this is that any substantival use can equally be expressed adjectivally. If you say 'the number of moons of Jupiter is four', I can reply 'oh, you mean Jupiter has four moons'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
     Full Idea: Crispin Wright has reactivated Frege's logistic program, which for decades just about everybody assumed was a lost cause.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by José A. Benardete - Logic and Ontology 3
     A reaction: [This opens Bernadete's section called "Back to Strong Logicism?"]
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
     Full Idea: The Peano Axioms are logical consequences of a statement constituting the core of an explanation of the notion of cardinal number. The infinity of cardinal numbers emerges as a consequence of the way cardinal number is explained.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xix)
     A reaction: This, along with Idea 13896, nicely summarises the neo-logicist project. I tend to favour a strategy which starts from ordering, rather than identities (1-1), but an attraction is that this approach is closer to counting objects in its basics.
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
     Full Idea: We shall endeavour to see whether it is possible to follow through the strategy adumbrated in 'Grundlagen' for establishing the Peano Axioms without at any stage invoking classes.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: The key idea of neo-logicism. If you can avoid classes entirely, then set theory paradoxes become irrelevant, and classes aren't logic. Philosophers now try to derive the Peano Axioms from all sorts of things. Wright admits infinity is a problem.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seemed to fail by Russell's paradox, Gödel's theorems, and non-logical axioms [Wright,C]
     Full Idea: Most would cite Russell's paradox, the non-logical character of the axioms which Russell and Whitehead's reconstruction of Frege's enterprise was constrained to employ, and the incompleteness theorems of Gödel, as decisive for logicism's failure.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
The standard objections are Russell's Paradox, non-logical axioms, and Gödel's theorems [Wright,C]
     Full Idea: The general view is that Russell's Paradox put paid to Frege's logicist attempt, and Russell's own attempt is vitiated by the non-logical character of his axioms (esp. Infinity), and by the incompleteness theorems of Gödel. But these are bad reasons.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: Wright's work is the famous modern attempt to reestablish logicism, in the face of these objections.
Logic is definitional, but real mathematics is axiomatic [Badiou]
     Full Idea: Logic is definitional, whereas real mathematics is axiomatic.
     From: Alain Badiou (Briefings on Existence [1998], 10)
7. Existence / A. Nature of Existence / 2. Types of Existence
The idea that 'exist' has multiple senses is not coherent [Wright,C]
     Full Idea: I have the gravest doubts whether any coherent account could be given of any multiplicity of senses of 'exist'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.x)
     A reaction: I thoroughly agree with this thought. Do water and wind exist in different senses of 'exist'?
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
There is no Being as a whole, because there is no set of all sets [Badiou]
     Full Idea: The fundamental theorem that 'there does not exist a set of all sets' designates the inexistence of Being as a whole. ...A crucial consequence of this property is that any ontological investigation is irremediably local.
     From: Alain Badiou (Briefings on Existence [1998], 14)
     A reaction: The second thought pushes Badiou into Topos Theory, where the real numbers (for example) have a separate theory in each 'topos'.
Mathematics inscribes being as such [Badiou]
     Full Idea: Mathematics inscribes being as such.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.12)
     A reaction: I don't pretend to understand that, but there is something about the purity and certainty of mathematics that makes us feel we are grappling with the core of existence. Perhaps. The same might be said of stubbing your toe on a bedpost.
7. Existence / A. Nature of Existence / 3. Being / b. Being and existence
Existence is Being itself, but only as our thought decides it [Badiou]
     Full Idea: Existence is precisely Being itself in as much as thought decides it. And that decision orients thought essentially. ...It is when you decide upon what exists that you bind your thought to Being.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: [2nd half p.57] Helpful for us non-Heideggerians to see what is going on. Does this mean that Being is Kant's noumenon?
7. Existence / A. Nature of Existence / 3. Being / i. Deflating being
The primitive name of Being is the empty set; in a sense, only the empty set 'is' [Badiou]
     Full Idea: In Set Theory, the primitive name of Being is the void, the empty set. The whole hierarchy takes root in it. In a certain sense, it alone 'is'.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: This is the key to Badiou's view that ontology is mathematics. David Lewis pursued interesting enquiries in this area.
The modern view of Being comes when we reject numbers as merely successions of One [Badiou]
     Full Idea: The saturation and collapse of the Euclidean idea of the being of number as One's procession signs the entry of the thought of Being into modern times.
     From: Alain Badiou (Briefings on Existence [1998], 11)
     A reaction: That is, by allowing that not all numbers are built of units, numbers expand widely enough to embrace everything we think of as Being. The landmark event is the acceptance of the infinite as a number.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
It is of the essence of being to appear [Badiou]
     Full Idea: It is of the essence of being to appear.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.16)
     A reaction: Nice slogan. In my humble opinion 'continental' philosophy is well worth reading because, despite the fluffy rhetoric and the shameless egotism and the desire to shock the bourgeoisie, they occasionally make wonderfully thought-provoking remarks.
7. Existence / D. Theories of Reality / 1. Ontologies
Ontology is (and always has been) Cantorian mathematics [Badiou]
     Full Idea: Enlightened by the Cantorian grounding of mathematics, we can assert ontology to be nothing other than mathematics itself. This has been the case ever since its Greek origin.
     From: Alain Badiou (Briefings on Existence [1998], 1)
     A reaction: There seems to be quite a strong feeling among mathematicians that new 'realms of being' are emerging from their researches. Only a Platonist, of course, is likely to find this idea sympathetic.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Singular terms in true sentences must refer to objects; there is no further question about their existence [Wright,C]
     Full Idea: When a class of terms functions as singular terms, and the sentences are true, then those terms genuinely refer. Being singular terms, their reference is to objects. There is no further question whether they really refer, and there are such objects.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: This seems to be a key sentence, because this whole view is standardly called 'platonic', but it certainly isn't platonism as we know it, Jim. Ontology has become an entirely linguistic matter, but do we then have 'sakes' and 'whereaboutses'?
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Contextually defined abstract terms genuinely refer to objects [Wright,C, by Dummett]
     Full Idea: Wright says we should accord to contextually defined abstract terms a genuine full-blown reference to objects.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.18
     A reaction: This is the punch line of Wright's neo-logicist programme. See Idea 9868 for his view of reference. Dummett regards this strong view of contextual definition as 'exorbitant'. Wright's view strikes me as blatantly false.
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Sortal concepts cannot require that things don't survive their loss, because of phase sortals [Wright,C]
     Full Idea: The claim that no concept counts as sortal if an instance of it can survive its loss, runs foul of so-called phase sortals like 'embryo' and 'chrysalis'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: The point being that those items only fall under that sortal for one phase of their career, and of their identity. I've always thought such claims absurd, and this gives a good reason for my view.
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity involves a decision about usage, and is non-realist and non-cognitive [Wright,C, by McFetridge]
     Full Idea: Wright espouses a non-realist, indeed non-cognitive account of logical necessity. Crucial to this is the idea that acceptance of a statement as necessary always involves an element of decision (to use it in a necessary way).
     From: report of Crispin Wright (Inventing Logical Necessity [1986]) by Ian McFetridge - Logical Necessity: Some Issues §3
     A reaction: This has little appeal to me, as I take (unfashionably) the view that that logical necessity is rooted in the behaviour of the actual physical world, with which you can't argue. We test simple logic by making up examples.
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
If we succeed in speaking the truth, we cannot know we have done it [Xenophanes]
     Full Idea: No man has seen certain truth, and no man will ever know about the gods and other things I mentioned; for if he succeeds in saying what is fully true, he himself is unaware of it; opinion is fixed by fate on all things.
     From: Xenophanes (fragments/reports [c.530 BCE], B34), quoted by Sextus Empiricus - Against the Professors (six books) 7.49.4
13. Knowledge Criteria / E. Relativism / 1. Relativism
If God had not created honey, men would say figs are sweeter [Xenophanes]
     Full Idea: If God had not created yellow honey, men would say that figs were sweeter.
     From: Xenophanes (fragments/reports [c.530 BCE], B38), quoted by Herodian - On Peculiar Speech 41.5
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
A concept is only a sortal if it gives genuine identity [Wright,C]
     Full Idea: Before we can conclude that φ expresses a sortal concept, we need to ensure that 'is the same φ as' generates statements of genuine identity rather than of some other equivalence relation.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
'Sortal' concepts show kinds, use indefinite articles, and require grasping identities [Wright,C]
     Full Idea: A concept is 'sortal' if it exemplifies a kind of object. ..In English predication of a sortal concept needs an indefinite article ('an' elm). ..What really constitutes the distinction is that it involves grasping identity for things which fall under it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: This is a key notion, which underlies the claims of 'sortal essentialism' (see David Wiggins).
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
Entities fall under a sortal concept if they can be used to explain identity statements concerning them [Wright,C]
     Full Idea: 'Tree' is not a sortal concept under which directions fall since we cannot adequately explain the truth-conditions of any identity statement involving a pair of tree-denoting singular terms by appealing to facts to do with parallelism between lines.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
     A reaction: The idea seems to be that these two fall under 'hedgehog', because that is a respect in which they are identical. I like to notion of explanation as a part of this.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
If we can establish directions from lines and parallelism, we were already committed to directions [Wright,C]
     Full Idea: The fact that it seems possible to establish a sortal notion of direction by reference to lines and parallelism, discloses tacit commitments to directions in statements about parallelism...There is incoherence in the idea that a line might lack direction.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xviii)
     A reaction: This seems like a slippery slope into a very extravagant platonism about concepts. Are concepts like direction as much a part of the natural world as rivers are? What other undiscovered concepts await us?
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A milder claim is that understanding requires some evidence of that understanding [Wright,C]
     Full Idea: A mild version of the verification principle would say that it makes sense to think of someone as understanding an expression only if he is able, by his use of the expression, to give the best possible evidence that he understands it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: That doesn't seem to tell us what understanding actually consists of, and may just be the truism that to demonstrate anything whatsoever will necessarily involve some evidence.
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
Holism cannot give a coherent account of scientific methodology [Wright,C, by Miller,A]
     Full Idea: Crispin Wright has argued that Quine's holism is implausible because it is actually incoherent: he claims that Quine's holism cannot provide us with a coherent account of scientific methodology.
     From: report of Crispin Wright (Inventing Logical Necessity [1986]) by Alexander Miller - Philosophy of Language 4.5
     A reaction: This sounds promising, given my intuitive aversion to linguistic holism, and almost everything to do with Quine. Scientific methodology is not isolated, but spreads into our ordinary (experimental) interactions with the world (e.g. Idea 2461).
19. Language / B. Reference / 1. Reference theories
If apparent reference can mislead, then so can apparent lack of reference [Wright,C]
     Full Idea: If the appearance of reference can be misleading, why cannot an apparent lack of reference be misleading?
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.xi)
     A reaction: A nice simple thought. Analytic philosophy has concerned itself a lot with sentences that seem to refer, but the reference can be analysed away. For me, this takes the question of reference out of the linguistic sphere, which wasn't Wright's plan.
19. Language / C. Assigning Meanings / 3. Predicates
We can accept Frege's idea of object without assuming that predicates have a reference [Wright,C]
     Full Idea: The heart of the problem is Frege's assumption that predicates have Bedeutungen at all; and no reason is at present evident why someone who espouses Frege's notion of object is contrained to make that assumption.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iv)
     A reaction: This seems like a penetrating objection to Frege's view of reference, and presumably supports the Kripke approach.
19. Language / F. Communication / 3. Denial
We must either assert or deny any single predicate of any single subject [Badiou]
     Full Idea: There can be nothing intermediate to an assertion and a denial. We must either assert or deny any single predicate of any single subject.
     From: Alain Badiou (Briefings on Existence [1998], 1011b24)
     A reaction: The first sentence seems to be bivalence, and the second sentence excluded middle.
21. Aesthetics / B. Nature of Art / 8. The Arts / b. Literature
All great poetry is engaged in rivalry with mathematics [Badiou]
     Full Idea: Like every great poet, Mallarmé was engaged in a tacit rivalry with mathematics.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.20)
     A reaction: I love these French pronouncements! Would Mallarmé have agreed? If poetry and mathematics are the poles, where is philosophy to be found?
25. Social Practice / E. Policies / 2. Religion in Society
For Enlightenment philosophers, God was no longer involved in politics [Badiou]
     Full Idea: For the philosophers of the Enlightenment politics is strictly the affair of humankind, an immanent practice from which recourse to the All Mighty's providential organization had to be discarded.
     From: Alain Badiou (Briefings on Existence [1998], Prol)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
The basic Eleatic belief was that all things are one [Xenophanes, by Plato]
     Full Idea: The Eleatic tribe, which had its beginnings from Xenophanes and still earlier, proceed on the grounds that all things so-called are one.
     From: report of Xenophanes (fragments/reports [c.530 BCE]) by Plato - The Sophist 242d
28. God / A. Divine Nature / 2. Divine Nature
Xenophanes said the essence of God was spherical and utterly inhuman [Xenophanes, by Diog. Laertius]
     Full Idea: Xenophanes taught that the essence of God was of a spherical form, in no respect resembling man.
     From: report of Xenophanes (fragments/reports [c.530 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.2.3
28. God / C. Attitudes to God / 5. Atheism
Ethiopian gods have black hair, and Thracian gods have red hair [Xenophanes]
     Full Idea: Ethiopians have gods with snub noses and black hair, Thracians have gods with grey eyes and red hair.
     From: Xenophanes (fragments/reports [c.530 BCE], B16), quoted by Clement - Miscellanies 7.22.1
Mortals believe gods are born, and have voices and clothes just like mortals [Xenophanes]
     Full Idea: Mortals believe the gods to be created by birth, and to have raiment, voice and body like mortals'.
     From: Xenophanes (fragments/reports [c.530 BCE], B14), quoted by Clement - Miscellanies 5.109.2
29. Religion / D. Religious Issues / 1. Religious Commitment / a. Religious Belief
The God of religion results from an encounter, not from a proof [Badiou]
     Full Idea: The God of metaphysics makes sense of existing according to a proof, while the God of religion makes sense of living according to an encounter
     From: Alain Badiou (Briefings on Existence [1998], Prol)