Combining Philosophers

All the ideas for A.George / D.J.Velleman, Paul Benacerraf and Tuomas E. Tahko

expand these ideas     |    start again     |     specify just one area for these philosophers


76 ideas

2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical truth is always compromising between ordinary language and sensible epistemology [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
There are no such things as numbers [Benacerraf]
Obtaining numbers by abstraction is impossible - there are too many; only a rule could give them, in order [Benacerraf]
We must explain how we know so many numbers, and recognise ones we haven't met before [Benacerraf]
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
If numbers are basically the cardinals (Frege-Russell view) you could know some numbers in isolation [Benacerraf]
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Disputes about mathematical objects seem irrelevant, and mathematicians cannot resolve them [Benacerraf, by Friend]
No particular pair of sets can tell us what 'two' is, just by one-to-one correlation [Benacerraf, by Lowe]
If ordinal numbers are 'reducible to' some set-theory, then which is which? [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
An adequate account of a number must relate it to its series [Benacerraf]
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
The number 3 defines the role of being third in a progression [Benacerraf]
Number words no more have referents than do the parts of a ruler [Benacerraf]
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
Realists have semantics without epistemology, anti-realists epistemology but bad semantics [Benacerraf, by Colyvan]
The platonist view of mathematics doesn't fit our epistemology very well [Benacerraf]
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are not predicates, as they function very differently from adjectives [Benacerraf]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
The set-theory paradoxes mean that 17 can't be the class of all classes with 17 members [Benacerraf]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Much infinite mathematics can still be justified finitely [George/Velleman]
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identity statements make sense only if there are possible individuating conditions [Benacerraf]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
If conceivability is a priori coherence, that implies possibility [Tahko]
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Essences are used to explain natural kinds, modality, and causal powers [Tahko]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
Scientific essentialists tend to characterise essence in terms of modality (not vice versa) [Tahko]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If essence is modal and laws are necessary, essentialist knowledge is found by scientists [Tahko]