Combining Philosophers

All the ideas for Alfred Tarski, Adolph Rami and Stewart Shapiro

expand these ideas     |    start again     |     specify just one area for these philosophers


242 ideas

1. Philosophy / E. Nature of Metaphysics / 5. Metaphysics beyond Science
Some say metaphysics is a highly generalised empirical study of objects [Tarski]
1. Philosophy / F. Analytic Philosophy / 1. Nature of Analysis
Disputes that fail to use precise scientific terminology are all meaningless [Tarski]
2. Reason / A. Nature of Reason / 6. Coherence
Coherence is a primitive, intuitive notion, not reduced to something formal [Shapiro]
2. Reason / D. Definition / 1. Definitions
For a definition we need the words or concepts used, the rules, and the structure of the language [Tarski]
2. Reason / D. Definition / 7. Contextual Definition
An 'implicit definition' gives a direct description of the relations of an entity [Shapiro]
3. Truth / A. Truth Problems / 2. Defining Truth
Tarski proved that truth cannot be defined from within a given theory [Tarski, by Halbach]
Tarski proved that any reasonably expressive language suffers from the liar paradox [Tarski, by Horsten]
'True sentence' has no use consistent with logic and ordinary language, so definition seems hopeless [Tarski]
In everyday language, truth seems indefinable, inconsistent, and illogical [Tarski]
Definitions of truth should not introduce a new version of the concept, but capture the old one [Tarski]
A definition of truth should be materially adequate and formally correct [Tarski]
A rigorous definition of truth is only possible in an exactly specified language [Tarski]
We may eventually need to split the word 'true' into several less ambiguous terms [Tarski]
3. Truth / B. Truthmakers / 1. For Truthmakers
There are five problems which the truth-maker theory might solve [Rami]
The truth-maker idea is usually justified by its explanatory power, or intuitive appeal [Rami]
3. Truth / B. Truthmakers / 2. Truthmaker Relation
The truth-making relation can be one-to-one, or many-to-many [Rami]
3. Truth / B. Truthmakers / 3. Truthmaker Maximalism
Central idea: truths need truthmakers; and possibly all truths have them, and makers entail truths [Rami]
3. Truth / B. Truthmakers / 4. Truthmaker Necessitarianism
Most theorists say that truth-makers necessitate their truths [Rami]
3. Truth / B. Truthmakers / 5. What Makes Truths / a. What makes truths
It seems best to assume different kinds of truth-maker, such as objects, facts, tropes, or events [Rami]
3. Truth / B. Truthmakers / 5. What Makes Truths / c. States of affairs make truths
Truth-makers seem to be states of affairs (plus optional individuals), or individuals and properties [Rami]
3. Truth / B. Truthmakers / 5. What Makes Truths / d. Being makes truths
'Truth supervenes on being' only gives necessary (not sufficient) conditions for contingent truths [Rami]
'Truth supervenes on being' avoids entities as truth-makers for negative truths [Rami]
3. Truth / B. Truthmakers / 7. Making Modal Truths
Maybe a truth-maker also works for the entailments of the given truth [Rami]
3. Truth / B. Truthmakers / 11. Truthmaking and Correspondence
Truth-making is usually internalist, but the correspondence theory is externalist [Rami]
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
Correspondence theories assume that truth is a representation relation [Rami]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Tarski's Theorem renders any precise version of correspondence impossible [Tarski, by Halbach]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarskian semantics says that a sentence is true iff it is satisfied by every sequence [Tarski, by Hossack]
'"It is snowing" is true if and only if it is snowing' is a partial definition of the concept of truth [Tarski]
Tarski gave up on the essence of truth, and asked how truth is used, or how it functions [Tarski, by Horsten]
Tarski did not just aim at a definition; he also offered an adequacy criterion for any truth definition [Tarski, by Halbach]
Tarski enumerates cases of truth, so it can't be applied to new words or languages [Davidson on Tarski]
Tarski define truths by giving the extension of the predicate, rather than the meaning [Davidson on Tarski]
Tarski made truth relative, by only defining truth within some given artificial language [Tarski, by O'Grady]
Tarski has to avoid stating how truths relate to states of affairs [Kirkham on Tarski]
It is convenient to attach 'true' to sentences, and hence the language must be specified [Tarski]
In the classical concept of truth, 'snow is white' is true if snow is white [Tarski]
Scheme (T) is not a definition of truth [Tarski]
Each interpreted T-sentence is a partial definition of truth; the whole definition is their conjunction [Tarski]
Use 'true' so that all T-sentences can be asserted, and the definition will then be 'adequate' [Tarski]
We don't give conditions for asserting 'snow is white'; just that assertion implies 'snow is white' is true [Tarski]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth only applies to closed formulas, but we need satisfaction of open formulas to define it [Burgess on Tarski]
Tarski uses sentential functions; truly assigning the objects to variables is what satisfies them [Tarski, by Rumfitt]
We can define the truth predicate using 'true of' (satisfaction) for variables and some objects [Tarski, by Horsten]
For physicalism, reduce truth to satisfaction, then define satisfaction as physical-plus-logic [Tarski, by Kirkham]
Insight: don't use truth, use a property which can be compositional in complex quantified sentence [Tarski, by Kirkham]
Tarski gave axioms for satisfaction, then derived its explicit definition, which led to defining truth [Tarski, by Davidson]
The best truth definition involves other semantic notions, like satisfaction (relating terms and objects) [Tarski]
Specify satisfaction for simple sentences, then compounds; true sentences are satisfied by all objects [Tarski]
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
We can't use a semantically closed language, or ditch our logic, so a meta-language is needed [Tarski]
The metalanguage must contain the object language, logic, and defined semantics [Tarski]
3. Truth / F. Semantic Truth / 2. Semantic Truth
Tarski defined truth for particular languages, but didn't define it across languages [Davidson on Tarski]
Tarski didn't capture the notion of an adequate truth definition, as Convention T won't prove non-contradiction [Halbach on Tarski]
Tarski says that his semantic theory of truth is completely neutral about all metaphysics [Tarski, by Haack]
Physicalists should explain reference nonsemantically, rather than getting rid of it [Tarski, by Field,H]
A physicalist account must add primitive reference to Tarski's theory [Field,H on Tarski]
If listing equivalences is a reduction of truth, witchcraft is just a list of witch-victim pairs [Field,H on Tarski]
Tarski made truth respectable, by proving that it could be defined [Tarski, by Halbach]
Tarski had a theory of truth, and a theory of theories of truth [Tarski, by Read]
Tarski's 'truth' is a precise relation between the language and its semantics [Tarski, by Walicki]
Tarskian truth neglects the atomic sentences [Mulligan/Simons/Smith on Tarski]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Tarski's had the first axiomatic theory of truth that was minimally adequate [Tarski, by Horsten]
Tarski defined truth, but an axiomatisation can be extracted from his inductive clauses [Tarski, by Halbach]
Tarski thought axiomatic truth was too contingent, and in danger of inconsistencies [Tarski, by Davidson]
We need an undefined term 'true' in the meta-language, specified by axioms [Tarski]
3. Truth / H. Deflationary Truth / 1. Redundant Truth
Truth can't be eliminated from universal claims, or from particular unspecified claims [Tarski]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Semantics is a very modest discipline which solves no real problems [Tarski]
Deflationist truth is an infinitely disjunctive property [Rami]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth tables give prior conditions for logic, but are outside the system, and not definitions [Tarski]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal operators are usually treated as quantifiers [Shapiro]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
Truth-maker theorists should probably reject the converse Barcan formula [Rami]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
Axiom of Choice: some function has a value for every set in a given set [Shapiro]
The Axiom of Choice seems to license an infinite amount of choosing [Shapiro]
The axiom of choice is controversial, but it could be replaced [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Anti-realists reject set theory [Shapiro]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Set theory and logic are fairy tales, but still worth studying [Tarski]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
There is no clear boundary between the logical and the non-logical [Tarski]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic was an afterthought in the development of modern logic [Shapiro]
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
The notion of finitude is actually built into first-order languages [Shapiro]
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
A language: primitive terms, then definition rules, then sentences, then axioms, and finally inference rules [Tarski]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
Some say that second-order logic is mathematics, not logic [Shapiro]
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Split out the logical vocabulary, make an assignment to the rest. It's logical if premises and conclusion match [Tarski, by Rumfitt]
Logical consequence can be defined in terms of the logical terminology [Shapiro]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
The two standard explanations of consequence are semantic (in models) and deductive [Shapiro]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Logical consequence is when in any model in which the premises are true, the conclusion is true [Tarski, by Beall/Restall]
Logical consequence: true premises give true conclusions under all interpretations [Tarski, by Hodges,W]
X follows from sentences K iff every model of K also models X [Tarski]
Semantic consequence is ineffective in second-order logic [Shapiro]
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Intuitionism only sanctions modus ponens if all three components are proved [Shapiro]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Either logic determines objects, or objects determine logic, or they are separate [Shapiro]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The truth definition proves semantic contradiction and excluded middle laws (not the logic laws) [Tarski]
The law of excluded middle might be seen as a principle of omniscience [Shapiro]
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is invariant under arbitrary permutations, so it seems to be a logical term [Tarski, by McGee]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Classical connectives differ from their ordinary language counterparts; '∧' is timeless, unlike 'and' [Shapiro]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A function is just an arbitrary correspondence between collections [Shapiro]
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
A name denotes an object if the object satisfies a particular sentential function [Tarski]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Maybe plural quantifiers should be understood in terms of classes or sets [Shapiro]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Tarski built a compositional semantics for predicate logic, from dependent satisfactions [Tarski, by McGee]
Tarksi invented the first semantics for predicate logic, using this conception of truth [Tarski, by Kirkham]
Semantics is the concepts of connections of language to reality, such as denotation, definition and truth [Tarski]
A language containing its own semantics is inconsistent - but we can use a second language [Tarski]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is satisfied when we can assert the sentence when the variables are assigned [Tarski]
Satisfaction is the easiest semantical concept to define, and the others will reduce to it [Tarski]
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
A sentence is 'satisfiable' if it has a model [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
The object language/ metalanguage distinction is the basis of model theory [Tarski, by Halbach]
A 'model' is a sequence of objects which satisfies a complete set of sentential functions [Tarski]
Model theory deals with relations, reference and extensions [Shapiro]
The central notion of model theory is the relation of 'satisfaction' [Shapiro]
Semantics for models uses set-theory [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
Theory ontology is never complete, but is only determined 'up to isomorphism' [Shapiro]
The set-theoretical hierarchy contains as many isomorphism types as possible [Shapiro]
Categoricity can't be reached in a first-order language [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
Any theory with an infinite model has a model of every infinite cardinality [Shapiro]
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Using the definition of truth, we can prove theories consistent within sound logics [Tarski]
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
Compactness is derived from soundness and completeness [Shapiro]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Tarski avoids the Liar Paradox, because truth cannot be asserted within the object language [Tarski, by Fisher]
The Liar makes us assert a false sentence, so it must be taken seriously [Tarski]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Virtually all of mathematics can be modeled in set theory [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are thought of as either Cauchy sequences or Dedekind cuts [Shapiro]
Understanding the real-number structure is knowing usage of the axiomatic language of analysis [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Cuts are made by the smallest upper or largest lower number, some of them not rational [Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
There is no grounding for mathematics that is more secure than mathematics [Shapiro]
Categories are the best foundation for mathematics [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
For intuitionists, proof is inherently informal [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Tarski improved Hilbert's geometry axioms, and without set-theory [Tarski, by Feferman/Feferman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
Natural numbers just need an initial object, successors, and an induction principle [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Mathematics originally concerned the continuous (geometry) and the discrete (arithmetic) [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Mathematical foundations may not be sets; categories are a popular rival [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Baseball positions and chess pieces depend entirely on context [Shapiro]
The even numbers have the natural-number structure, with 6 playing the role of 3 [Shapiro]
Could infinite structures be apprehended by pattern recognition? [Shapiro]
The 4-pattern is the structure common to all collections of four objects [Shapiro]
The main mathematical structures are algebraic, ordered, and topological [Shapiro]
Some structures are exemplified by both abstract and concrete [Shapiro]
Mathematical structures are defined by axioms, or in set theory [Shapiro]
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
The main versions of structuralism are all definitionally equivalent [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Is there is no more to structures than the systems that exemplify them? [Shapiro]
Number statements are generalizations about number sequences, and are bound variables [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Because one structure exemplifies several systems, a structure is a one-over-many [Shapiro]
There is no 'structure of all structures', just as there is no set of all sets [Shapiro]
Shapiro's structuralism says model theory (comparing structures) is the essence of mathematics [Shapiro, by Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Does someone using small numbers really need to know the infinite structure of arithmetic? [Shapiro]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We distinguish realism 'in ontology' (for objects), and 'in truth-value' (for being either true or false) [Shapiro]
If mathematical objects are accepted, then a number of standard principles will follow [Shapiro]
Platonists claim we can state the essence of a number without reference to the others [Shapiro]
Platonism must accept that the Peano Axioms could all be false [Shapiro]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition is an outright hindrance to five-dimensional geometry [Shapiro]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
A stone is a position in some pattern, and can be viewed as an object, or as a location [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Tarski's theory of truth shifted the approach away from syntax, to set theory and semantics [Feferman/Feferman on Tarski]
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Can the ideal constructor also destroy objects? [Shapiro]
Presumably nothing can block a possible dynamic operation? [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
'Impredicative' definitions refer to the thing being described [Shapiro]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Can we discover whether a deck is fifty-two cards, or a person is time-slices or molecules? [Shapiro]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The abstract/concrete boundary now seems blurred, and would need a defence [Shapiro]
Mathematicians regard arithmetic as concrete, and group theory as abstract [Shapiro]
7. Existence / D. Theories of Reality / 7. Fictionalism
Fictionalism eschews the abstract, but it still needs the possible (without model theory) [Shapiro]
Structuralism blurs the distinction between mathematical and ordinary objects [Shapiro]
8. Modes of Existence / A. Relations / 2. Internal Relations
Internal relations depend either on the existence of the relata, or on their properties [Rami]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
I am a deeply convinced nominalist [Tarski]
9. Objects / A. Existence of Objects / 1. Physical Objects
The notion of 'object' is at least partially structural and mathematical [Shapiro]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
A blurry border is still a border [Shapiro]
9. Objects / C. Structure of Objects / 2. Hylomorphism / a. Hylomorphism
The extremes of essentialism are that all properties are essential, or only very trivial ones [Rami]
9. Objects / D. Essence of Objects / 3. Individual Essences
An 'individual essence' is possessed uniquely by a particular object [Rami]
9. Objects / D. Essence of Objects / 5. Essence as Kind
'Sortal essentialism' says being a particular kind is what is essential [Rami]
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
Unlosable properties are not the same as essential properties [Rami]
10. Modality / A. Necessity / 3. Types of Necessity
Physical possibility is part of metaphysical possibility which is part of logical possibility [Rami]
10. Modality / A. Necessity / 6. Logical Necessity
Logical modalities may be acceptable, because they are reducible to satisfaction in models [Shapiro]
10. Modality / B. Possibility / 2. Epistemic possibility
If it is possible 'for all I know' then it is 'epistemically possible' [Rami]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Why does the 'myth' of possible worlds produce correct modal logic? [Shapiro]
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We apprehend small, finite mathematical structures by abstraction from patterns [Shapiro]
18. Thought / E. Abstraction / 2. Abstracta by Selection
Simple types can be apprehended through their tokens, via abstraction [Shapiro]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
A structure is an abstraction, focussing on relationships, and ignoring other features [Shapiro]
We can apprehend structures by focusing on or ignoring features of patterns [Shapiro]
We can focus on relations between objects (like baseballers), ignoring their other features [Shapiro]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstract objects might come by abstraction over an equivalence class of base entities [Shapiro]
19. Language / E. Analyticity / 1. Analytic Propositions
Sentences are 'analytical' if every sequence of objects models them [Tarski]
21. Aesthetics / A. Aesthetic Experience / 3. Taste
Taste is the capacity to judge an object or representation which is thought to be beautiful [Tarski, by Schellekens]