Combining Philosophers

All the ideas for Anaxarchus, Alex Oliver and A.George / D.J.Velleman

expand these ideas     |    start again     |     specify just one area for these philosophers


71 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
A metaphysics has an ontology (objects) and an ideology (expressed ideas about them) [Oliver]
2. Reason / B. Laws of Thought / 6. Ockham's Razor
Ockham's Razor has more content if it says believe only in what is causal [Oliver]
2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
3. Truth / B. Truthmakers / 7. Making Modal Truths
Necessary truths seem to all have the same truth-maker [Oliver]
3. Truth / B. Truthmakers / 12. Rejecting Truthmakers
Slingshot Argument: seems to prove that all sentences have the same truth-maker [Oliver]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
Much infinite mathematics can still be justified finitely [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / c. Commitment of predicates
Accepting properties by ontological commitment tells you very little about them [Oliver]
Reference is not the only way for a predicate to have ontological commitment [Oliver]
8. Modes of Existence / B. Properties / 1. Nature of Properties
There are four conditions defining the relations between particulars and properties [Oliver]
If properties are sui generis, are they abstract or concrete? [Oliver]
8. Modes of Existence / B. Properties / 2. Need for Properties
There are just as many properties as the laws require [Oliver]
8. Modes of Existence / B. Properties / 3. Types of Properties
We have four options, depending whether particulars and properties are sui generis or constructions [Oliver]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
The expressions with properties as their meanings are predicates and abstract singular terms [Oliver]
There are five main semantic theories for properties [Oliver]
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
Tropes are not properties, since they can't be instantiated twice [Oliver]
The property of redness is the maximal set of the tropes of exactly similar redness [Oliver]
The orthodox view does not allow for uninstantiated tropes [Oliver]
Maybe concrete particulars are mereological wholes of abstract particulars [Oliver]
8. Modes of Existence / B. Properties / 13. Tropes / b. Critique of tropes
Tropes can overlap, and shouldn't be splittable into parts [Oliver]
8. Modes of Existence / D. Universals / 1. Universals
'Structural universals' methane and butane are made of the same universals, carbon and hydrogen [Oliver]
8. Modes of Existence / D. Universals / 3. Instantiated Universals
Located universals are wholly present in many places, and two can be in the same place [Oliver]
Aristotle's instantiated universals cannot account for properties of abstract objects [Oliver]
If universals ground similarities, what about uniquely instantiated universals? [Oliver]
8. Modes of Existence / D. Universals / 4. Uninstantiated Universals
Uninstantiated universals seem to exist if they themselves have properties [Oliver]
Uninstantiated properties are useful in philosophy [Oliver]
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
Instantiation is set-membership [Oliver]
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Nominalism can reject abstractions, or universals, or sets [Oliver]
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Things can't be fusions of universals, because two things could then be one thing [Oliver]
Abstract sets of universals can't be bundled to make concrete things [Oliver]
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Science is modally committed, to disposition, causation and law [Oliver]
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
18. Thought / D. Concepts / 4. Structure of Concepts / i. Conceptual priority
Conceptual priority is barely intelligible [Oliver]