Combining Philosophers

All the ideas for Augustin-Louis Cauchy, Vann McGee and Engelbretsen,G/Sayward,C

expand these ideas     |    start again     |     specify just one area for these philosophers


18 ideas

4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
The four 'perfect syllogisms' are called Barbara, Celarent, Darii and Ferio [Engelbretsen/Sayward]
Syllogistic logic has one rule: what is affirmed/denied of wholes is affirmed/denied of their parts [Engelbretsen/Sayward]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Syllogistic can't handle sentences with singular terms, or relational terms, or compound sentences [Engelbretsen/Sayward]
4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
Term logic uses expression letters and brackets, and '-' for negative terms, and '+' for compound terms [Engelbretsen/Sayward]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
In modern logic all formal validity can be characterised syntactically [Engelbretsen/Sayward]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic rests on truth and models, where constructivist logic rests on defence and refutation [Engelbretsen/Sayward]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Validity is explained as truth in all models, because that relies on the logical terms [McGee]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Unlike most other signs, = cannot be eliminated [Engelbretsen/Sayward]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Natural language includes connectives like 'because' which are not truth-functional [McGee]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables need to range over more than collections of first-order objects [McGee]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
An ontologically secure semantics for predicate calculus relies on sets [McGee]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logically valid sentences are analytic truths which are just true because of their logical words [McGee]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness theorems are uninformative, because they rely on soundness in their proofs [McGee]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Axioms are ω-incomplete if the instances are all derivable, but the universal quantification isn't [Engelbretsen/Sayward]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Values that approach zero, becoming less than any quantity, are 'infinitesimals' [Cauchy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
When successive variable values approach a fixed value, that is its 'limit' [Cauchy]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
The culmination of Euclidean geometry was axioms that made all models isomorphic [McGee]
19. Language / F. Communication / 2. Assertion
A maxim claims that if we are allowed to assert a sentence, that means it must be true [McGee]