Combining Philosophers

All the ideas for B Hale / C Wright, Jackson/Pargetter/Prior and Crispin Wright

expand these ideas     |    start again     |     specify just one area for these philosophers


62 ideas

1. Philosophy / C. History of Philosophy / 1. History of Philosophy
We can only learn from philosophers of the past if we accept the risk of major misrepresentation [Wright,C]
2. Reason / C. Styles of Reason / 1. Dialectic
The best way to understand a philosophical idea is to defend it [Wright,C]
2. Reason / D. Definition / 7. Contextual Definition
The attempt to define numbers by contextual definition has been revived [Wright,C, by Fine,K]
2. Reason / F. Fallacies / 1. Fallacy
It is a fallacy to explain the obscure with the even more obscure [Hale/Wright]
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An expression refers if it is a singular term in some true sentences [Wright,C, by Dummett]
Singular terms refer if they make certain atomic statements true [Hale/Wright]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / c. Grelling's paradox
If 'x is heterological' iff it does not apply to itself, then 'heterological' is heterological if it isn't heterological [Hale/Wright]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Number theory aims at the essence of natural numbers, giving their nature, and the epistemology [Wright,C]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Instances of a non-sortal concept can only be counted relative to a sortal concept [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Wright thinks Hume's Principle is more fundamental to cardinals than the Peano Axioms are [Wright,C, by Heck]
There are five Peano axioms, which can be expressed informally [Wright,C]
Number truths are said to be the consequence of PA - but it needs semantic consequence [Wright,C]
What facts underpin the truths of the Peano axioms? [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The incompletability of formal arithmetic reveals that logic also cannot be completely characterized [Hale/Wright]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Sameness of number is fundamental, not counting, despite children learning that first [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
We derive Hume's Law from Law V, then discard the latter in deriving arithmetic [Wright,C, by Fine,K]
Frege has a good system if his 'number principle' replaces his basic law V [Wright,C, by Friend]
Wright says Hume's Principle is analytic of cardinal numbers, like a definition [Wright,C, by Heck]
It is 1-1 correlation of concepts, and not progression, which distinguishes natural number [Wright,C]
Neo-logicism founds arithmetic on Hume's Principle along with second-order logic [Hale/Wright]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
The Julius Caesar problem asks for a criterion for the concept of a 'number' [Hale/Wright]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If structures are relative, this undermines truth-value and objectivity [Hale/Wright]
The structural view of numbers doesn't fit their usage outside arithmetical contexts [Hale/Wright]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Number platonism says that natural number is a sortal concept [Wright,C]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Treating numbers adjectivally is treating them as quantifiers [Wright,C]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicism is only noteworthy if logic has a privileged position in our ontology and epistemology [Hale/Wright]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The neo-Fregean is more optimistic than Frege about contextual definitions of numbers [Hale/Wright]
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
Logicism might also be revived with a quantificational approach, or an abstraction-free approach [Hale/Wright]
Neo-Fregeanism might be better with truth-makers, rather than quantifier commitment [Hale/Wright]
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seemed to fail by Russell's paradox, Gödel's theorems, and non-logical axioms [Wright,C]
The standard objections are Russell's Paradox, non-logical axioms, and Gödel's theorems [Wright,C]
Are neo-Fregeans 'maximalists' - that everything which can exist does exist? [Hale/Wright]
7. Existence / A. Nature of Existence / 2. Types of Existence
The idea that 'exist' has multiple senses is not coherent [Wright,C]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
The identity of Pegasus with Pegasus may be true, despite the non-existence [Hale/Wright]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Singular terms in true sentences must refer to objects; there is no further question about their existence [Wright,C]
8. Modes of Existence / B. Properties / 3. Types of Properties
Maybe we have abundant properties for semantics, and sparse properties for ontology [Hale/Wright]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
A successful predicate guarantees the existence of a property - the way of being it expresses [Hale/Wright]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Contextually defined abstract terms genuinely refer to objects [Wright,C, by Dummett]
Objects just are what singular terms refer to [Hale/Wright]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Sortal concepts cannot require that things don't survive their loss, because of phase sortals [Wright,C]
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity involves a decision about usage, and is non-realist and non-cognitive [Wright,C, by McFetridge]
17. Mind and Body / B. Behaviourism / 2. Potential Behaviour
Dispositions are second-order properties, the property of having some property [Jackson/Pargetter/Prior, by Armstrong]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
A concept is only a sortal if it gives genuine identity [Wright,C]
'Sortal' concepts show kinds, use indefinite articles, and require grasping identities [Wright,C]
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
Entities fall under a sortal concept if they can be used to explain identity statements concerning them [Wright,C]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
If we can establish directions from lines and parallelism, we were already committed to directions [Wright,C]
Abstracted objects are not mental creations, but depend on equivalence between given entities [Hale/Wright]
One first-order abstraction principle is Frege's definition of 'direction' in terms of parallel lines [Hale/Wright]
Abstractionism needs existential commitment and uniform truth-conditions [Hale/Wright]
Equivalence abstraction refers to objects otherwise beyond our grasp [Hale/Wright]
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A milder claim is that understanding requires some evidence of that understanding [Wright,C]
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
Holism cannot give a coherent account of scientific methodology [Wright,C, by Miller,A]
19. Language / B. Reference / 1. Reference theories
If apparent reference can mislead, then so can apparent lack of reference [Wright,C]
19. Language / B. Reference / 4. Descriptive Reference / a. Sense and reference
Reference needs truth as well as sense [Hale/Wright]
19. Language / C. Assigning Meanings / 3. Predicates
We can accept Frege's idea of object without assuming that predicates have a reference [Wright,C]
19. Language / E. Analyticity / 2. Analytic Truths
Many conceptual truths ('yellow is extended') are not analytic, as derived from logic and definitions [Hale/Wright]