Combining Philosophers

All the ideas for B Hale / C Wright, Mark Colyvan and Nicholas Bourbaki

expand these ideas     |    start again     |     specify just one area for these philosophers


45 ideas

2. Reason / F. Fallacies / 1. Fallacy
It is a fallacy to explain the obscure with the even more obscure [Hale/Wright]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
Singular terms refer if they make certain atomic statements true [Hale/Wright]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / c. Grelling's paradox
If 'x is heterological' iff it does not apply to itself, then 'heterological' is heterological if it isn't heterological [Hale/Wright]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The incompletability of formal arithmetic reveals that logic also cannot be completely characterized [Hale/Wright]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Neo-logicism founds arithmetic on Hume's Principle along with second-order logic [Hale/Wright]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
The Julius Caesar problem asks for a criterion for the concept of a 'number' [Hale/Wright]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
From the axiomatic point of view, mathematics is a storehouse of abstract structures [Bourbaki]
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If structures are relative, this undermines truth-value and objectivity [Hale/Wright]
The structural view of numbers doesn't fit their usage outside arithmetical contexts [Hale/Wright]
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicism is only noteworthy if logic has a privileged position in our ontology and epistemology [Hale/Wright]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The neo-Fregean is more optimistic than Frege about contextual definitions of numbers [Hale/Wright]
Logicism might also be revived with a quantificational approach, or an abstraction-free approach [Hale/Wright]
Neo-Fregeanism might be better with truth-makers, rather than quantifier commitment [Hale/Wright]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Are neo-Fregeans 'maximalists' - that everything which can exist does exist? [Hale/Wright]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
The identity of Pegasus with Pegasus may be true, despite the non-existence [Hale/Wright]
8. Modes of Existence / B. Properties / 3. Types of Properties
Maybe we have abundant properties for semantics, and sparse properties for ontology [Hale/Wright]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
A successful predicate guarantees the existence of a property - the way of being it expresses [Hale/Wright]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Objects just are what singular terms refer to [Hale/Wright]
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
Reductio proofs do not seem to be very explanatory [Colyvan]
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstracted objects are not mental creations, but depend on equivalence between given entities [Hale/Wright]
One first-order abstraction principle is Frege's definition of 'direction' in terms of parallel lines [Hale/Wright]
Abstractionism needs existential commitment and uniform truth-conditions [Hale/Wright]
Equivalence abstraction refers to objects otherwise beyond our grasp [Hale/Wright]
19. Language / B. Reference / 4. Descriptive Reference / a. Sense and reference
Reference needs truth as well as sense [Hale/Wright]
19. Language / E. Analyticity / 2. Analytic Truths
Many conceptual truths ('yellow is extended') are not analytic, as derived from logic and definitions [Hale/Wright]