Combining Philosophers

All the ideas for Crispin Wright, Homer and David Bostock

expand these ideas     |    start again     |     specify just one area for these philosophers


164 ideas

1. Philosophy / C. History of Philosophy / 1. History of Philosophy
We can only learn from philosophers of the past if we accept the risk of major misrepresentation [Wright,C]
2. Reason / C. Styles of Reason / 1. Dialectic
The best way to understand a philosophical idea is to defend it [Wright,C]
2. Reason / D. Definition / 7. Contextual Definition
The attempt to define numbers by contextual definition has been revived [Wright,C, by Fine,K]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
The completeness of first-order logic implies its compactness [Bostock]
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
Validity is a conclusion following for premises, even if there is no proof [Bostock]
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
If we are to express that there at least two things, we need identity [Bostock]
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An expression refers if it is a singular term in some true sentences [Wright,C, by Dummett]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
The Deduction Theorem greatly simplifies the search for proof [Bostock]
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
A completed open branch gives an interpretation which verifies those formulae [Bostock]
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
A sequent calculus is good for comparing proof systems [Bostock]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
5. Theory of Logic / K. Features of Logics / 2. Consistency
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Number theory aims at the essence of natural numbers, giving their nature, and the epistemology [Wright,C]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
The number of reals is the number of subsets of the natural numbers [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Instances of a non-sortal concept can only be counted relative to a sortal concept [Wright,C]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
Wright thinks Hume's Principle is more fundamental to cardinals than the Peano Axioms are [Wright,C, by Heck]
There are five Peano axioms, which can be expressed informally [Wright,C]
Number truths are said to be the consequence of PA - but it needs semantic consequence [Wright,C]
What facts underpin the truths of the Peano axioms? [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Sameness of number is fundamental, not counting, despite children learning that first [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
We derive Hume's Law from Law V, then discard the latter in deriving arithmetic [Wright,C, by Fine,K]
Frege has a good system if his 'number principle' replaces his basic law V [Wright,C, by Friend]
Wright says Hume's Principle is analytic of cardinal numbers, like a definition [Wright,C, by Heck]
There are many criteria for the identity of numbers [Bostock]
It is 1-1 correlation of concepts, and not progression, which distinguishes natural number [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Number platonism says that natural number is a sortal concept [Wright,C]
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
Treating numbers adjectivally is treating them as quantifiers [Wright,C]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
Many crucial logicist definitions are in fact impredicative [Bostock]
If Hume's Principle is the whole story, that implies structuralism [Bostock]
Logicism seemed to fail by Russell's paradox, Gödel's theorems, and non-logical axioms [Wright,C]
The standard objections are Russell's Paradox, non-logical axioms, and Gödel's theorems [Wright,C]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
The usual definitions of identity and of natural numbers are impredicative [Bostock]
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
Predicativism makes theories of huge cardinals impossible [Bostock]
If mathematics rests on science, predicativism may be the best approach [Bostock]
If we can only think of what we can describe, predicativism may be implied [Bostock]
The predicativity restriction makes a difference with the real numbers [Bostock]
7. Existence / A. Nature of Existence / 2. Types of Existence
The idea that 'exist' has multiple senses is not coherent [Wright,C]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Singular terms in true sentences must refer to objects; there is no further question about their existence [Wright,C]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Contextually defined abstract terms genuinely refer to objects [Wright,C, by Dummett]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Sortal concepts cannot require that things don't survive their loss, because of phase sortals [Wright,C]
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
Logical necessity involves a decision about usage, and is non-realist and non-cognitive [Wright,C, by McFetridge]
17. Mind and Body / A. Mind-Body Dualism / 8. Dualism of Mind Critique
Homer does not distinguish between soul and body [Homer, by Williams,B]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
'Sortal' concepts show kinds, use indefinite articles, and require grasping identities [Wright,C]
A concept is only a sortal if it gives genuine identity [Wright,C]
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
Entities fall under a sortal concept if they can be used to explain identity statements concerning them [Wright,C]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
If we can establish directions from lines and parallelism, we were already committed to directions [Wright,C]
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A milder claim is that understanding requires some evidence of that understanding [Wright,C]
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
Holism cannot give a coherent account of scientific methodology [Wright,C, by Miller,A]
19. Language / B. Reference / 1. Reference theories
If apparent reference can mislead, then so can apparent lack of reference [Wright,C]
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
We can accept Frege's idea of object without assuming that predicates have a reference [Wright,C]
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
20. Action / B. Preliminaries of Action / 2. Willed Action / a. Will to Act
The 'will' doesn't exist; there is just conclusion, then action [Homer, by Williams,B]
22. Metaethics / C. The Good / 1. Goodness / a. Form of the Good
Plato says the Good produces the Intellectual-Principle, which in turn produces the Soul [Homer, by Plotinus]
24. Political Theory / C. Ruling a State / 2. Leaders / a. Autocracy
Let there be one ruler [Homer]
28. God / C. Attitudes to God / 5. Atheism
Homer so enjoys the company of the gods that he must have been deeply irreligious [Homer, by Nietzsche]