Combining Philosophers

All the ideas for DH Mellor / A Oliver, Graham Priest and Kurt Gdel

expand these ideas     |    start again     |     specify just one area for these philosophers


81 ideas

2. Reason / A. Nature of Reason / 1. On Reason
For clear questions posed by reason, reason can also find clear answers [Gödel]
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
2. Reason / B. Laws of Thought / 6. Ockham's Razor
Ockham's Razor is the principle that we need reasons to believe in entities [Mellor/Oliver]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
4. Formal Logic / C. Predicate Calculus PC / 3. Completeness of PC
Gödel proved the completeness of first order predicate logic in 1930 [Gödel, by Walicki]
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
<a,b&62; is a set whose members occur in the order shown [Priest,G]
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
Φ indicates the empty set, which has no members [Priest,G]
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
X⊆Y means set X is a 'subset' of set Y [Priest,G]
X = Y means the set X equals the set Y [Priest,G]
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
A 'set' is a collection of objects [Priest,G]
The 'empty set' or 'null set' has no members [Priest,G]
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
A 'proper subset' is smaller than the containing set [Priest,G]
A 'singleton' is a set with only one member [Priest,G]
A 'member' of a set is one of the objects in the set [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Gödel proved the classical relative consistency of the axiom V = L [Gödel, by Putnam]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Gödel proved that first-order logic is complete, and second-order logic incomplete [Gödel, by Dummett]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
Originally truth was viewed with total suspicion, and only demonstrability was accepted [Gödel]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's Theorems did not refute the claim that all good mathematical questions have answers [Gödel, by Koellner]
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
5. Theory of Logic / L. Paradox / 1. Paradox
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / b. König's paradox
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / d. Richard's paradox
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Set-theory paradoxes are no worse than sense deception in physics [Gödel]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
The Continuum Hypothesis is not inconsistent with the axioms of set theory [Gödel, by Clegg]
If set theory is consistent, we cannot refute or prove the Continuum Hypothesis [Gödel, by Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel eventually hoped for a generalised completeness theorem leaving nothing undecidable [Gödel, by Koellner]
The real reason for Incompleteness in arithmetic is inability to define truth in a language [Gödel]
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Basic mathematics is related to abstract elements of our empirical ideas [Gödel]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
8. Modes of Existence / B. Properties / 6. Categorical Properties
Properties are respects in which particular objects may be alike or differ [Mellor/Oliver]
8. Modes of Existence / B. Properties / 12. Denial of Properties
Nominalists ask why we should postulate properties at all [Mellor/Oliver]
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
18. Thought / E. Abstraction / 5. Abstracta by Negation
Abstractions lack causes, effects and spatio-temporal locations [Mellor/Oliver]