Combining Philosophers

All the ideas for David Bostock, Bob Hale and Norman Malcolm

expand these ideas     |    start again     |     specify just one area for these philosophers


183 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
You cannot understand what exists without understanding possibility and necessity [Hale]
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Questions about objects are questions about certain non-vacuous singular terms [Hale]
2. Reason / D. Definition / 6. Definition by Essence
A canonical defintion specifies the type of thing, and what distinguish this specimen [Hale]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
2. Reason / D. Definition / 12. Paraphrase
An expression is a genuine singular term if it resists elimination by paraphrase [Hale]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The two Barcan principles are easily proved in fairly basic modal logic [Hale]
With a negative free logic, we can dispense with the Barcan formulae [Hale]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
The completeness of first-order logic implies its compactness [Bostock]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
If second-order variables range over sets, those are just objects; properties and relations aren't sets [Hale]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
5. Theory of Logic / C. Ontology of Logic / 4. Logic by Convention
Maybe conventionalism applies to meaning, but not to the truth of propositions expressed [Hale]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
If we are to express that there at least two things, we need identity [Bostock]
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
We should decide whether singular terms are genuine by their usage [Hale]
Often the same singular term does not ensure reliable inference [Hale]
Plenty of clear examples have singular terms with no ontological commitment [Hale]
If singular terms can't be language-neutral, then we face a relativity about their objects [Hale]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
The Deduction Theorem greatly simplifies the search for proof [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
Unlike axiom proofs, natural deduction proofs needn't focus on logical truths and theorems [Hale]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
A completed open branch gives an interpretation which verifies those formulae [Bostock]
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
A sequent calculus is good for comparing proof systems [Bostock]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
The number of reals is the number of subsets of the natural numbers [Bostock]
The real numbers may be introduced by abstraction as ratios of quantities [Hale, by Hale/Wright]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
There are many criteria for the identity of numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
Add Hume's principle to logic, to get numbers; arithmetic truths rest on the nature of the numbers [Hale]
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
If Hume's Principle is the whole story, that implies structuralism [Bostock]
Many crucial logicist definitions are in fact impredicative [Bostock]
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
Predicativism makes theories of huge cardinals impossible [Bostock]
If mathematics rests on science, predicativism may be the best approach [Bostock]
If we can only think of what we can describe, predicativism may be implied [Bostock]
The predicativity restriction makes a difference with the real numbers [Bostock]
The usual definitions of identity and of natural numbers are impredicative [Bostock]
7. Existence / C. Structure of Existence / 5. Supervenience / a. Nature of supervenience
Interesting supervenience must characterise the base quite differently from what supervenes on it [Hale]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The abstract/concrete distinction is based on what is perceivable, causal and located [Hale]
Colours and points seem to be both concrete and abstract [Hale]
The abstract/concrete distinction is in the relations in the identity-criteria of object-names [Hale]
Token-letters and token-words are concrete objects, type-letters and type-words abstract [Hale]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
There is a hierarchy of abstraction, based on steps taken by equivalence relations [Hale]
7. Existence / D. Theories of Reality / 8. Facts / c. Facts and truths
There is no gap between a fact that p, and it is true that p; so we only have the truth-condtions for p [Hale]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
8. Modes of Existence / D. Universals / 1. Universals
Realists take universals to be the referrents of both adjectives and of nouns [Hale]
If F can't have location, there is no problem of things having F in different locations [Hale]
It is doubtful if one entity, a universal, can be picked out by both predicates and abstract nouns [Hale]
8. Modes of Existence / E. Nominalism / 1. Nominalism / c. Nominalism about abstracta
Objections to Frege: abstracta are unknowable, non-independent, unstatable, unindividuated [Hale]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Shapes and directions are of something, but games and musical compositions are not [Hale]
Many abstract objects, such as chess, seem non-spatial, but are not atemporal [Hale]
If the mental is non-spatial but temporal, then it must be classified as abstract [Hale]
Being abstract is based on a relation between things which are spatially separated [Hale]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
The modern Fregean use of the term 'object' is much broader than the ordinary usage [Hale]
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
We can't believe in a 'whereabouts' because we ask 'what kind of object is it?' [Hale]
9. Objects / C. Structure of Objects / 5. Composition of an Object
If a chair could be made of slightly different material, that could lead to big changes [Hale]
9. Objects / F. Identity among Objects / 1. Concept of Identity
The relations featured in criteria of identity are always equivalence relations [Hale]
9. Objects / F. Identity among Objects / 3. Relative Identity
We sometimes apply identity without having a real criterion [Hale]
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
10. Modality / A. Necessity / 2. Nature of Necessity
Absolute necessity might be achievable either logically or metaphysically [Hale]
10. Modality / A. Necessity / 3. Types of Necessity
Absolute necessities are necessarily necessary [Hale]
Maybe not-p is logically possible, but p is metaphysically necessary, so the latter is not absolute [Hale]
A strong necessity entails a weaker one, but not conversely; possibilities go the other way [Hale]
'Relative' necessity is just a logical consequence of some statements ('strong' if they are all true) [Hale]
'Absolute necessity' is when there is no restriction on the things which necessitate p [Hale]
Logical and metaphysical necessities differ in their vocabulary, and their underlying entities [Hale]
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical necessity says there is no possibility of falsehood [Hale]
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
'Broadly' logical necessities are derived (in a structure) entirely from the concepts [Hale]
Logical necessities are true in virtue of the nature of all logical concepts [Hale]
Logical necessity is something which is true, no matter what else is the case [Hale]
Maybe each type of logic has its own necessity, gradually becoming broader [Hale]
10. Modality / C. Sources of Modality / 1. Sources of Necessity
Explanation of necessity must rest on something necessary or something contingent [Hale]
Why is this necessary, and what is necessity in general; why is this necessary truth true, and why necessary? [Hale]
The explanation of a necessity can be by a truth (which may only happen to be a necessary truth) [Hale]
It seems that we cannot show that modal facts depend on non-modal facts [Hale]
10. Modality / C. Sources of Modality / 3. Necessity by Convention
If necessity rests on linguistic conventions, those are contingent, so there is no necessity [Hale]
10. Modality / C. Sources of Modality / 4. Necessity from Concepts
Conceptual necessities are made true by all concepts [Hale]
Concept-identities explain how we know necessities, not why they are necessary [Hale]
10. Modality / C. Sources of Modality / 6. Necessity from Essence
The big challenge for essentialist views of modality is things having necessary existence [Hale]
Essentialism doesn't explain necessity reductively; it explains all necessities in terms of a few basic natures [Hale]
If necessity derives from essences, how do we explain the necessary existence of essences? [Hale]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
What are these worlds, that being true in all of them makes something necessary? [Hale]
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possible worlds make every proposition true or false, which endorses classical logic [Hale]
15. Nature of Minds / A. Nature of Mind / 4. Other Minds / d. Other minds by analogy
If my conception of pain derives from me, it is a contradiction to speak of another's pain [Malcolm]
18. Thought / C. Content / 6. Broad Content
The molecules may explain the water, but they are not what 'water' means [Hale]
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
God's existence is either necessary or impossible, and no one has shown that the concept of God is contradictory [Malcolm]