Combining Philosophers

All the ideas for David Bostock, Douglas Lackey and Daniel C. Dennett

expand these ideas     |    start again     |     specify just one area for these philosophers


194 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / a. Philosophy as worldly
An overexamined life is as bad as an unexamined one [Dennett]
2. Reason / A. Nature of Reason / 9. Limits of Reason
Rationality requires the assumption that things are either for better or worse [Dennett]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
The completeness of first-order logic implies its compactness [Bostock]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
If we are to express that there at least two things, we need identity [Bostock]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
The Deduction Theorem greatly simplifies the search for proof [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
A completed open branch gives an interpretation which verifies those formulae [Bostock]
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
A sequent calculus is good for comparing proof systems [Bostock]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Sets always exceed terms, so all the sets must exceed all the sets [Lackey]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
It seems that the ordinal number of all the ordinals must be bigger than itself [Lackey]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
The number of reals is the number of subsets of the natural numbers [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
There are many criteria for the identity of numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Many crucial logicist definitions are in fact impredicative [Bostock]
If Hume's Principle is the whole story, that implies structuralism [Bostock]
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
Predicativism makes theories of huge cardinals impossible [Bostock]
If mathematics rests on science, predicativism may be the best approach [Bostock]
If we can only think of what we can describe, predicativism may be implied [Bostock]
The usual definitions of identity and of natural numbers are impredicative [Bostock]
The predicativity restriction makes a difference with the real numbers [Bostock]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
We can bring dispositions into existence, as in creating an identifier [Dennett, by Mumford]
9. Objects / D. Essence of Objects / 13. Nominal Essence
Words are fixed by being attached to similarity clusters, without mention of 'essences' [Dennett]
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Philosophers regularly confuse failures of imagination with insights into necessity [Dennett]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / c. Possible but inconceivable
Why pronounce impossible what you cannot imagine? [Dennett]
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / b. Primary/secondary
Light wavelengths entering the eye are only indirectly related to object colours [Dennett]
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / f. Foundationalism critique
That every mammal has a mother is a secure reality, but without foundations [Dennett]
13. Knowledge Criteria / C. External Justification / 2. Causal Justification
Causal theories require the "right" sort of link (usually unspecified) [Dennett]
14. Science / C. Induction / 1. Induction
Brains are essentially anticipation machines [Dennett]
15. Nature of Minds / A. Nature of Mind / 1. Mind / e. Questions about mind
Minds are hard-wired, or trial-and-error, or experimental, or full self-aware [Dennett, by Heil]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / a. Consciousness
We can't draw a clear line between conscious and unconscious [Dennett]
Perhaps the brain doesn't 'fill in' gaps in consciousness if no one is looking. [Dennett]
Sentience comes in grades from robotic to super-human; we only draw a line for moral reasons [Dennett]
Does consciousness need the concept of consciousness? [Dennett]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / c. Parts of consciousness
Maybe language is crucial to consciousness [Dennett]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / e. Cause of consciousness
Conscious events can only be explained in terms of unconscious events [Dennett]
15. Nature of Minds / B. Features of Minds / 3. Privacy
We can know a lot of what it is like to be a bat, and nothing important is unknown [Dennett]
15. Nature of Minds / B. Features of Minds / 4. Intentionality / b. Intentionality theories
Theories of intentionality presuppose rationality, so can't explain it [Dennett]
Unconscious intentionality is the foundation of the mind [Dennett]
15. Nature of Minds / B. Features of Minds / 5. Qualia / a. Nature of qualia
Dennett denies the existence of qualia [Dennett, by Lowe]
What is it like to notice an uncomfortable position when you are asleep? [Dennett]
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
"Qualia" can be replaced by complex dispositional brain states [Dennett]
Obviously there can't be a functional anaylsis of qualia if they are defined by intrinsic properties [Dennett]
15. Nature of Minds / B. Features of Minds / 6. Inverted Qualia
We can't assume that dispositions will remain normal when qualia have been inverted [Dennett]
15. Nature of Minds / B. Features of Minds / 7. Blindsight
In peripheral vision we see objects without their details, so blindsight is not that special [Dennett]
Blindsight subjects glean very paltry information [Dennett]
16. Persons / A. Concept of a Person / 4. Persons as Agents
I am the sum total of what I directly control [Dennett]
16. Persons / B. Nature of the Self / 4. Presupposition of Self
People accept blurred boundaries in many things, but insist self is All or Nothing [Dennett]
16. Persons / B. Nature of the Self / 6. Self as Higher Awareness
Being a person must involve having second-order beliefs and desires (about beliefs and desires) [Dennett]
16. Persons / B. Nature of the Self / 7. Self and Body / c. Self as brain controller
The psychological self is an abstraction, not a thing in the brain [Dennett]
16. Persons / E. Rejecting the Self / 2. Self as Social Construct
Selves are not soul-pearls, but artefacts of social processes [Dennett]
16. Persons / E. Rejecting the Self / 3. Narrative Self
We tell stories about ourselves, to protect, control and define who we are [Dennett]
We spin narratives about ourselves, and the audience posits a centre of gravity for them [Dennett]
16. Persons / E. Rejecting the Self / 4. Denial of the Self
The brain is controlled by shifting coalitions, guided by good purposeful habits [Dennett]
The work done by the 'homunculus in the theatre' must be spread amongst non-conscious agencies [Dennett]
16. Persons / F. Free Will / 1. Nature of Free Will
You can be free even though force would have prevented you doing otherwise [Dennett, by PG]
Can we conceive of a being with a will freer than our own? [Dennett]
16. Persons / F. Free Will / 2. Sources of Free Will
Awareness of thought is a step beyond awareness of the world [Dennett]
Foreknowledge permits control [Dennett]
17. Mind and Body / A. Mind-Body Dualism / 6. Epiphenomenalism
If an epiphenomenon has no physical effects, it has to be undetectable [Dennett]
17. Mind and Body / A. Mind-Body Dualism / 8. Dualism of Mind Critique
Dualism wallows in mystery, and to accept it is to give up [Dennett]
17. Mind and Body / B. Behaviourism / 3. Intentional Stance
Beliefs and desires aren't real; they are prediction techniques [Dennett]
The active self is a fiction created because we are ignorant of our motivations [Dennett]
If mind is just an explanation, the explainer must have beliefs [Rey on Dennett]
The 'intentional stance' is a way of interpreting an entity by assuming it is rational and self-aware [Dennett]
17. Mind and Body / C. Functionalism / 1. Functionalism
Could a robot be made conscious just by software? [Dennett]
17. Mind and Body / C. Functionalism / 6. Homuncular Functionalism
All functionalism is 'homuncular', of one grain size or another [Dennett]
We descend from robots, and our intentionality is composed of billions of crude intentional systems [Dennett]
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
There is no more anger in adrenaline than silliness in a bottle of whiskey [Dennett]
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Intelligent agents are composed of nested homunculi, of decreasing intelligence, ending in machines [Dennett]
17. Mind and Body / E. Mind as Physical / 3. Eliminativism
I don't deny consciousness; it just isn't what people think it is [Dennett]
It is arbitrary to say which moment of brain processing is conscious [Dennett]
Maybe there is a minimum brain speed for supporting a mind [Dennett]
Visual experience is composed of neural activity, which we find pleasing [Dennett]
17. Mind and Body / E. Mind as Physical / 7. Anti-Physicalism / b. Multiple realisability
The materials for a mind only matter because of speed, and a need for transducers and effectors [Dennett]
18. Thought / A. Modes of Thought / 4. Folk Psychology
You couldn't drive a car without folk psychology [Dennett]
Like the 'centre of gravity', desires and beliefs are abstract concepts with no actual existence [Dennett]
18. Thought / B. Mechanics of Thought / 4. Language of Thought
The predecessor and rival of the language of thought hypothesis is the picture theory of ideas [Dennett]
A language of thought doesn't explain content [Dennett]
18. Thought / B. Mechanics of Thought / 6. Artificial Thought / a. Artificial Intelligence
What matters about neuro-science is the discovery of the functional role of the chemistry [Dennett]
18. Thought / C. Content / 1. Content
States have content if we can predict them well by assuming intentionality [Dennett, by Schulte]
18. Thought / C. Content / 9. Conceptual Role Semantics
The nature of content is entirely based on its functional role [Dennett]
18. Thought / D. Concepts / 5. Concepts and Language / b. Concepts are linguistic
Concepts are things we (unlike dogs) can think about, because we have language [Dennett]
18. Thought / D. Concepts / 5. Concepts and Language / c. Concepts without language
Maybe there can be non-conscious concepts (e.g. in bees) [Dennett]
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learning is evolution in the brain [Dennett]
25. Social Practice / F. Life Issues / 3. Abortion
Most people see an abortion differently if the foetus lacks a brain [Dennett]
26. Natural Theory / A. Speculations on Nature / 2. Natural Purpose / b. Limited purposes
Originally there were no reasons, purposes or functions; since there were no interests, there were only causes [Dennett]
27. Natural Reality / G. Biology / 1. Biology
Biology is a type of engineering, not a search for laws of nature [Dennett]
27. Natural Reality / G. Biology / 2. Life
Maybe plants are very slow (and sentient) animals, overlooked because we are faster? [Dennett]
27. Natural Reality / G. Biology / 3. Evolution
Darwin's idea was the best idea ever [Dennett]