Combining Philosophers

All the ideas for Dennis Whitcomb, Andr Gallois and Brian Clegg

expand these ideas     |    start again     |     specify just one area for these philosophers


28 ideas

1. Philosophy / A. Wisdom / 3. Wisdom Deflated
The devil was wise as an angel, and lost no knowledge when he rebelled [Whitcomb]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
Any set can always generate a larger set - its powerset, of subsets [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
An ordinal number is defined by the set that comes before it [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
9. Objects / B. Unity of Objects / 3. Unity Problems / b. Cat and its tail
A CAR and its major PART can become identical, yet seem to have different properties [Gallois]
9. Objects / E. Objects over Time / 1. Objects over Time
Gallois hoped to clarify identity through time, but seems to make talk of it impossible [Hawley on Gallois]
If things change they become different - but then no one thing undergoes the change! [Gallois]
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
4D: time is space-like; a thing is its history; past and future are real; or things extend in time [Gallois]
9. Objects / F. Identity among Objects / 3. Relative Identity
Gallois is committed to identity with respect to times, and denial of simple identity [Gallois, by Sider]
9. Objects / F. Identity among Objects / 6. Identity between Objects
Occasional Identity: two objects can be identical at one time, and different at others [Gallois, by Hawley]
If two things are equal, each side involves a necessity, so the equality is necessary [Gallois]