Combining Philosophers

All the ideas for E Margolis/S Laurence, George Cantor and Keith Devlin

expand these ideas     |    start again     |     specify just one area for these philosophers


85 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Logic was merely a branch of rhetoric until the scientific 17th century [Devlin]
1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Naturalistic philosophers oppose analysis, preferring explanation to a priori intuition [Margolis/Laurence]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'No councillors are bankers' and 'All bankers are athletes' implies 'Some athletes are not councillors' [Devlin]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Modern propositional inference replaces Aristotle's 19 syllogisms with modus ponens [Devlin]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Predicate logic retains the axioms of propositional logic [Devlin]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
Cantor developed sets from a progression into infinity by addition, multiplication and exponentiation [Cantor, by Lavine]
A set is a collection into a whole of distinct objects of our intuition or thought [Cantor]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Cantor gives informal versions of ZF axioms as ways of getting from one set to another [Cantor, by Lake]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Situation theory is logic that takes account of context [Devlin]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Golden ages: 1900-1960 for pure logic, and 1950-1985 for applied logic [Devlin]
Montague's intensional logic incorporated the notion of meaning [Devlin]
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Where a conditional is purely formal, an implication implies a link between premise and conclusion [Devlin]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Sentences of apparent identical form can have different contextual meanings [Devlin]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Space and time are atomic in the arrow, and divisible in the tortoise [Devlin]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
Ordinals are generated by endless succession, followed by a limit ordinal [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
Cantor needed Power Set for the reals, but then couldn't count the new collections [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The 'extension of a concept' in general may be quantitatively completely indeterminate [Cantor]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
12. Knowledge Sources / D. Empiricism / 2. Associationism
Modern empiricism tends to emphasise psychological connections, not semantic relations [Margolis/Laurence]
13. Knowledge Criteria / E. Relativism / 5. Language Relativism
People still say the Hopi have no time concepts, despite Whorf's later denial [Devlin]
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Body-type seems to affect a mind's cognition and conceptual scheme [Margolis/Laurence]
18. Thought / B. Mechanics of Thought / 4. Language of Thought
Language of thought has subject/predicate form and includes logical devices [Margolis/Laurence]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
Concepts are either representations, or abilities, or Fregean senses [Margolis/Laurence]
18. Thought / D. Concepts / 3. Ontology of Concepts / a. Concepts as representations
A computer may have propositional attitudes without representations [Margolis/Laurence]
Do mental representations just lead to a vicious regress of explanations [Margolis/Laurence]
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Maybe the concept CAT is just the ability to discriminate and infer about cats [Margolis/Laurence]
The abilities view cannot explain the productivity of thought, or mental processes [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Concept-structure explains typicality, categories, development, reference and composition [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
Classically, concepts give necessary and sufficient conditions for falling under them [Margolis/Laurence]
Typicality challenges the classical view; we see better fruit-prototypes in apples than in plums [Margolis/Laurence]
The classical theory explains acquisition, categorization and reference [Margolis/Laurence]
It may be that our concepts (such as 'knowledge') have no definitional structure [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / d. Concepts as prototypes
The prototype theory is probabilistic, picking something out if it has sufficient of the properties [Margolis/Laurence]
Prototype theory categorises by computing the number of shared constituents [Margolis/Laurence]
People don't just categorise by apparent similarities [Margolis/Laurence]
Complex concepts have emergent properties not in the ingredient prototypes [Margolis/Laurence]
Many complex concepts obviously have no prototype [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
The theory theory of concepts says they are parts of theories, defined by their roles [Margolis/Laurence]
The theory theory is holistic, so how can people have identical concepts? [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / g. Conceptual atomism
Maybe concepts have no structure, and determined by relations to the world, not to other concepts [Margolis/Laurence]
18. Thought / D. Concepts / 5. Concepts and Language / c. Concepts without language
People can formulate new concepts which are only named later [Margolis/Laurence]
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
We form the image of a cardinal number by a double abstraction, from the elements and from their order [Cantor]
19. Language / C. Assigning Meanings / 1. Syntax
How do we parse 'time flies like an arrow' and 'fruit flies like an apple'? [Devlin]
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
The distinction between sentences and abstract propositions is crucial in logic [Devlin]
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]