Combining Philosophers

All the ideas for Engelbretsen,G/Sayward,C, Mark Colyvan and George Boolos

expand these ideas     |    start again     |     specify just one area for these philosophers


60 ideas

4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
The four 'perfect syllogisms' are called Barbara, Celarent, Darii and Ferio [Engelbretsen/Sayward]
Syllogistic logic has one rule: what is affirmed/denied of wholes is affirmed/denied of their parts [Engelbretsen/Sayward]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Syllogistic can't handle sentences with singular terms, or relational terms, or compound sentences [Engelbretsen/Sayward]
4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
Term logic uses expression letters and brackets, and '-' for negative terms, and '+' for compound terms [Engelbretsen/Sayward]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
Rejecting double negation elimination undermines reductio proofs [Colyvan]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
The logic of ZF is classical first-order predicate logic with identity [Boolos]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A few axioms of set theory 'force themselves on us', but most of them don't [Boolos]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Do the Replacement Axioms exceed the iterative conception of sets? [Boolos, by Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The use of plurals doesn't commit us to sets; there do not exist individuals and collections [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve sets are inconsistent: there is no set for things that do not belong to themselves [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception says sets are formed at stages; some are 'earlier', and must be formed first [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is weak (Fs only collect is something the same size does) or strong (fewer Fs than objects) [Boolos, by Potter]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Does a bowl of Cheerios contain all its sets and subsets? [Boolos]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
In modern logic all formal validity can be characterised syntactically [Engelbretsen/Sayward]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic rests on truth and models, where constructivist logic rests on defence and refutation [Engelbretsen/Sayward]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
Monadic second-order logic might be understood in terms of plural quantifiers [Boolos, by Shapiro]
Boolos showed how plural quantifiers can interpret monadic second-order logic [Boolos, by Linnebo]
Any sentence of monadic second-order logic can be translated into plural first-order logic [Boolos, by Linnebo]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is clearly a logical concept, and greatly enhances predicate calculus [Boolos]
Unlike most other signs, = cannot be eliminated [Engelbretsen/Sayward]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order quantifiers are just like plural quantifiers in ordinary language, with no extra ontology [Boolos, by Shapiro]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
We should understand second-order existential quantifiers as plural quantifiers [Boolos, by Shapiro]
Plural forms have no more ontological commitment than to first-order objects [Boolos]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Boolos invented plural quantification [Boolos, by Benardete,JA]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Axioms are ω-incomplete if the instances are all derivable, but the universal quantification isn't [Engelbretsen/Sayward]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinite natural numbers is as obvious as infinite sentences in English [Boolos]
Intuitionists only accept a few safe infinities [Colyvan]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Mathematics and science do not require very high orders of infinity [Boolos]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Many concepts can only be expressed by second-order logic [Boolos]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematics isn't surprising, given that we experience many objects as abstract [Boolos]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
First- and second-order quantifiers are two ways of referring to the same things [Boolos]
8. Modes of Existence / D. Universals / 1. Universals
It is lunacy to think we only see ink-marks, and not word-types [Boolos]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
I am a fan of abstract objects, and confident of their existence [Boolos]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
We deal with abstract objects all the time: software, poems, mistakes, triangles.. [Boolos]
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
Reductio proofs do not seem to be very explanatory [Colyvan]
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
An 'abstraction principle' says two things are identical if they are 'equivalent' in some respect [Boolos]