Combining Philosophers

All the ideas for Engelbretsen,G/Sayward,C, R Kaplan / E Kaplan and Max J. Cresswell

expand these ideas     |    start again     |     specify just one area for these philosophers


21 ideas

4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
The four 'perfect syllogisms' are called Barbara, Celarent, Darii and Ferio [Engelbretsen/Sayward]
Syllogistic logic has one rule: what is affirmed/denied of wholes is affirmed/denied of their parts [Engelbretsen/Sayward]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Syllogistic can't handle sentences with singular terms, or relational terms, or compound sentences [Engelbretsen/Sayward]
4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
Term logic uses expression letters and brackets, and '-' for negative terms, and '+' for compound terms [Engelbretsen/Sayward]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
Normal system K has five axioms and rules [Cresswell]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
D is valid on every serial frame, but not where there are dead ends [Cresswell]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
S4 has 14 modalities, and always reduces to a maximum of three modal operators [Cresswell]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
In S5 all the long complex modalities reduce to just three, and their negations [Cresswell]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
Reject the Barcan if quantifiers are confined to worlds, and different things exist in other worlds [Cresswell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Using Choice, you can cut up a small ball and make an enormous one from the pieces [Kaplan/Kaplan]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
In modern logic all formal validity can be characterised syntactically [Engelbretsen/Sayward]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic rests on truth and models, where constructivist logic rests on defence and refutation [Engelbretsen/Sayward]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Unlike most other signs, = cannot be eliminated [Engelbretsen/Sayward]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Axioms are ω-incomplete if the instances are all derivable, but the universal quantification isn't [Engelbretsen/Sayward]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
1 and 0, then add for naturals, subtract for negatives, divide for rationals, take roots for irrationals [Kaplan/Kaplan]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The rationals are everywhere - the irrationals are everywhere else [Kaplan/Kaplan]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
'Commutative' laws say order makes no difference; 'associative' laws say groupings make no difference [Kaplan/Kaplan]
'Distributive' laws say if you add then multiply, or multiply then add, you get the same result [Kaplan/Kaplan]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is 'Euclidean' if aRb and aRc imply bRc [Cresswell]
10. Modality / A. Necessity / 4. De re / De dicto modality
A de dicto necessity is true in all worlds, but not necessarily of the same thing in each world [Cresswell]
14. Science / C. Induction / 3. Limits of Induction
The first million numbers confirm that no number is greater than a million [Kaplan/Kaplan]