Combining Philosophers

All the ideas for Geoffrey Hellman, Buddha (Siddhartha Gautama) and Euclid

expand these ideas     |    start again     |     specify just one area for these philosophers


20 ideas

2. Reason / E. Argument / 6. Conclusive Proof
Proof reveals the interdependence of truths, as well as showing their certainty [Euclid, by Frege]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
If you pick an arbitrary triangle, things proved of it are true of all triangles [Euclid, by Lemmon]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Euclid's geometry is synthetic, but Descartes produced an analytic version of it [Euclid, by Resnik]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
A unit is that according to which each existing thing is said to be one [Euclid]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Postulate 2 says a line can be extended continuously [Euclid, by Shapiro]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Euclid's common notions or axioms are what we must have if we are to learn anything at all [Euclid, by Roochnik]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism is now common, studying relations, with no regard for what the objects might be [Hellman]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Modal structuralism says mathematics studies possible structures, which may or may not be actualised [Hellman, by Friend]
Statements of pure mathematics are elliptical for a sort of modal conditional [Hellman, by Chihara]
Modal structuralism can only judge possibility by 'possible' models [Shapiro on Hellman]
Maybe mathematical objects only have structural roles, and no intrinsic nature [Hellman]
16. Persons / E. Rejecting the Self / 4. Denial of the Self
Individuals don't exist, but are conventional names for sets of elements [Buddha]
29. Religion / C. Spiritual Disciplines / 3. Buddhism
The Buddha believed the gods would eventually disappear, and Nirvana was much higher [Buddha, by Armstrong,K]
Life is suffering, from which only compassion, gentleness, truth and sobriety can save us [Buddha]