Combining Philosophers

All the ideas for George Boolos, A.George / D.J.Velleman and Michle Friend

expand these ideas     |    start again     |     specify just one area for these philosophers


113 ideas

2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
An 'impredicative' definition seems circular, because it uses the term being defined [Friend]
2. Reason / D. Definition / 10. Stipulative Definition
Classical definitions attempt to refer, but intuitionist/constructivist definitions actually create objects [Friend]
2. Reason / E. Argument / 5. Reductio ad Absurdum
Reductio ad absurdum proves an idea by showing that its denial produces contradiction [Friend]
3. Truth / A. Truth Problems / 8. Subjective Truth
Anti-realists see truth as our servant, and epistemically contrained [Friend]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
In classical/realist logic the connectives are defined by truth-tables [Friend]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Double negation elimination is not valid in intuitionist logic [Friend]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic was developed for fictional or non-existent objects [Friend]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
The logic of ZF is classical first-order predicate logic with identity [Boolos]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
A 'proper subset' of A contains only members of A, but not all of them [Friend]
A 'powerset' is all the subsets of a set [Friend]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Set theory makes a minimum ontological claim, that the empty set exists [Friend]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Infinite sets correspond one-to-one with a subset [Friend]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A few axioms of set theory 'force themselves on us', but most of them don't [Boolos]
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Do the Replacement Axioms exceed the iterative conception of sets? [Boolos, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The use of plurals doesn't commit us to sets; there do not exist individuals and collections [Boolos]
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve sets are inconsistent: there is no set for things that do not belong to themselves [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception says sets are formed at stages; some are 'earlier', and must be formed first [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is weak (Fs only collect is something the same size does) or strong (fewer Fs than objects) [Boolos, by Potter]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Does a bowl of Cheerios contain all its sets and subsets? [Boolos]
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
Monadic second-order logic might be understood in terms of plural quantifiers [Boolos, by Shapiro]
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
Boolos showed how plural quantifiers can interpret monadic second-order logic [Boolos, by Linnebo]
Any sentence of monadic second-order logic can be translated into plural first-order logic [Boolos, by Linnebo]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
The law of excluded middle is syntactic; it just says A or not-A, not whether they are true or false [Friend]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is clearly a logical concept, and greatly enhances predicate calculus [Boolos]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order quantifiers are just like plural quantifiers in ordinary language, with no extra ontology [Boolos, by Shapiro]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
We should understand second-order existential quantifiers as plural quantifiers [Boolos, by Shapiro]
Plural forms have no more ontological commitment than to first-order objects [Boolos]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Intuitionists read the universal quantifier as "we have a procedure for checking every..." [Friend]
Boolos invented plural quantification [Boolos, by Benardete,JA]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
A 'complete' theory contains either any sentence or its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox asks whether the set of all ordinals is itself an ordinal [Friend]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
The 'integers' are the positive and negative natural numbers, plus zero [Friend]
The 'rational' numbers are those representable as fractions [Friend]
A number is 'irrational' if it cannot be represented as a fraction [Friend]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
The natural numbers are primitive, and the ordinals are up one level of abstraction [Friend]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Cardinal numbers answer 'how many?', with the order being irrelevant [Friend]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
The 'real' numbers (rationals and irrationals combined) is the Continuum, which has no gaps [Friend]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinite natural numbers is as obvious as infinite sentences in English [Boolos]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Mathematics and science do not require very high orders of infinity [Boolos]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Raising omega to successive powers of omega reveal an infinity of infinities [Friend]
The first limit ordinal is omega (greater, but without predecessor), and the second is twice-omega [Friend]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Between any two rational numbers there is an infinite number of rational numbers [Friend]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Is mathematics based on sets, types, categories, models or topology? [Friend]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
Many concepts can only be expressed by second-order logic [Boolos]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical theories can be translated into the language of set theory [Friend]
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The number 8 in isolation from the other numbers is of no interest [Friend]
In structuralism the number 8 is not quite the same in different structures, only equivalent [Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Are structures 'ante rem' (before reality), or are they 'in re' (grounded in physics)? [Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralist says maths concerns concepts about base objects, not base objects themselves [Friend]
Structuralism focuses on relations, predicates and functions, with objects being inessential [Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
'In re' structuralism says that the process of abstraction is pattern-spotting [Friend]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematics isn't surprising, given that we experience many objects as abstract [Boolos]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Mathematics should be treated as true whenever it is indispensable to our best physical theory [Friend]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
Much infinite mathematics can still be justified finitely [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Constructivism rejects too much mathematics [Friend]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
Intuitionists typically retain bivalence but reject the law of excluded middle [Friend]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
First- and second-order quantifiers are two ways of referring to the same things [Boolos]
8. Modes of Existence / D. Universals / 1. Universals
It is lunacy to think we only see ink-marks, and not word-types [Boolos]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
I am a fan of abstract objects, and confident of their existence [Boolos]
Structuralists call a mathematical 'object' simply a 'place in a structure' [Friend]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
We deal with abstract objects all the time: software, poems, mistakes, triangles.. [Boolos]
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Studying biology presumes the laws of chemistry, and it could never contradict them [Friend]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
Concepts can be presented extensionally (as objects) or intensionally (as a characterization) [Friend]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
An 'abstraction principle' says two things are identical if they are 'equivalent' in some respect [Boolos]