Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Gideon Rosen and Peter Smith

expand these ideas     |    start again     |     specify just one area for these philosophers


74 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Philosophers are often too fussy about words, dismissing perfectly useful ordinary terms [Rosen]
2. Reason / D. Definition / 1. Definitions
Figuring in the definition of a thing doesn't make it a part of that thing [Rosen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing (with Extensionality) guarantees an infinity of sets, just from a single element [Rosen]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'partial function' maps only some elements to another set [Smith,P]
A 'total function' maps every element to one element in another set [Smith,P]
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
Two functions are the same if they have the same extension [Smith,P]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
Soundness is true axioms and a truth-preserving proof system [Smith,P]
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
'Complete' applies both to whole logics, and to theories within them [Smith,P]
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Explanations fail to be monotonic [Rosen]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
Baby Arithmetic is complete, but not very expressive [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic (Q) is not negation complete [Smith,P]
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Things could be true 'in virtue of' others as relations between truths, or between truths and items [Rosen]
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
Facts are structures of worldly items, rather like sentences, individuated by their ingredients [Rosen]
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is one that depends on a thing and its parts, and not on its relations [Rosen]
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
How we refer to abstractions is much less clear than how we refer to other things [Rosen]
9. Objects / A. Existence of Objects / 4. Impossible objects
A Meinongian principle might say that there is an object for any modest class of properties [Rosen]
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical necessity is absolute and universal; metaphysical possibility is very tolerant [Rosen]
'Metaphysical' modality is the one that makes the necessity or contingency of laws of nature interesting [Rosen]
Sets, universals and aggregates may be metaphysically necessary in one sense, but not another [Rosen]
The excellent notion of metaphysical 'necessity' cannot be defined [Rosen]
Standard Metaphysical Necessity: P holds wherever the actual form of the world holds [Rosen]
Non-Standard Metaphysical Necessity: when ¬P is incompatible with the nature of things [Rosen]
10. Modality / A. Necessity / 6. Logical Necessity
Something may be necessary because of logic, but is that therefore a special sort of necessity? [Rosen]
10. Modality / B. Possibility / 3. Combinatorial possibility
Combinatorial theories of possibility assume the principles of combination don't change across worlds [Rosen]
10. Modality / C. Sources of Modality / 1. Sources of Necessity
Are necessary truths rooted in essences, or also in basic grounding laws? [Rosen]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
A proposition is 'correctly' conceivable if an ominiscient being could conceive it [Rosen]
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
18. Thought / E. Abstraction / 2. Abstracta by Selection
The Way of Abstraction used to say an abstraction is an idea that was formed by abstracting [Rosen]
18. Thought / E. Abstraction / 5. Abstracta by Negation
Nowadays abstractions are defined as non-spatial, causally inert things [Rosen]
Chess may be abstract, but it has existed in specific space and time [Rosen]
Sets are said to be abstract and non-spatial, but a set of books can be on a shelf [Rosen]
18. Thought / E. Abstraction / 6. Abstracta by Conflation
Conflating abstractions with either sets or universals is a big claim, needing a big defence [Rosen]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Functional terms can pick out abstractions by asserting an equivalence relation [Rosen]
Abstraction by equivalence relationships might prove that a train is an abstract entity [Rosen]
19. Language / E. Analyticity / 1. Analytic Propositions
'Bachelor' consists in or reduces to 'unmarried' male, but not the other way around [Rosen]
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
The MRL view says laws are the theorems of the simplest and strongest account of the world [Rosen]
27. Natural Reality / F. Chemistry / 1. Chemistry
An acid is just a proton donor [Rosen]