Combining Philosophers

All the ideas for Halbach,V/Leigh,G.E., Xenophanes and Shaughan Lavine

expand these ideas     |    start again     |     specify just one area for these philosophers


49 ideas

3. Truth / A. Truth Problems / 2. Defining Truth
If we define truth, we can eliminate it [Halbach/Leigh]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
If a language cannot name all objects, then satisfaction must be used, instead of unary truth [Halbach/Leigh]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories need a powerful metalanguage, typically including set theory [Halbach/Leigh]
3. Truth / F. Semantic Truth / 2. Semantic Truth
The T-sentences are deductively weak, and also not deductively conservative [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
A natural theory of truth plays the role of reflection principles, establishing arithmetic's soundness [Halbach/Leigh]
If deflationary truth is not explanatory, truth axioms should be 'conservative', proving nothing new [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
The FS axioms use classical logical, but are not fully consistent [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
KF is formulated in classical logic, but describes non-classical truth, which allows truth-value gluts [Halbach/Leigh]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
8. Modes of Existence / B. Properties / 12. Denial of Properties
We can reduce properties to true formulas [Halbach/Leigh]
8. Modes of Existence / E. Nominalism / 1. Nominalism / c. Nominalism about abstracta
Nominalists can reduce theories of properties or sets to harmless axiomatic truth theories [Halbach/Leigh]
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
If we succeed in speaking the truth, we cannot know we have done it [Xenophanes]
13. Knowledge Criteria / E. Relativism / 1. Relativism
If God had not created honey, men would say figs are sweeter [Xenophanes]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
The basic Eleatic belief was that all things are one [Xenophanes, by Plato]
28. God / A. Divine Nature / 2. Divine Nature
Xenophanes said the essence of God was spherical and utterly inhuman [Xenophanes, by Diog. Laertius]
28. God / C. Attitudes to God / 5. Atheism
Ethiopian gods have black hair, and Thracian gods have red hair [Xenophanes]
Mortals believe gods are born, and have voices and clothes just like mortals [Xenophanes]