Combining Philosophers

All the ideas for Hastings Rashdall, Scott Soames and Shaughan Lavine

expand these ideas     |    start again     |     specify just one area for these philosophers


55 ideas

1. Philosophy / C. History of Philosophy / 5. Modern Philosophy / c. Modern philosophy mid-period
Analytic philosophy loved the necessary a priori analytic, linguistic modality, and rigour [Soames]
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
If philosophy is analysis of meaning, available to all competent speakers, what's left for philosophers? [Soames]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
The interest of quantified modal logic is its metaphysical necessity and essentialism [Soames]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / a. Descriptions
Indefinite descriptions are quantificational in subject position, but not in predicate position [Soames]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Recognising the definite description 'the man' as a quantifier phrase, not a singular term, is a real insight [Soames]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
The universal and existential quantifiers were chosen to suit mathematics [Soames]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
Kripkean essential properties and relations are necessary, in all genuinely possible worlds [Soames]
10. Modality / A. Necessity / 5. Metaphysical Necessity
There are more metaphysically than logically necessary truths [Soames]
We understand metaphysical necessity intuitively, from ordinary life [Soames]
10. Modality / C. Sources of Modality / 3. Necessity by Convention
A key achievement of Kripke is showing that important modalities are not linguistic in source [Soames]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
Kripkean possible worlds are abstract maximal states in which the real world could have been [Soames]
16. Persons / B. Nature of the Self / 2. Ethical Self
Morality requires a minimum commitment to the self [Rashdall]
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
To study meaning, study truth conditions, on the basis of syntax, and representation by the parts [Soames]
Tarski's account of truth-conditions is too weak to determine meanings [Soames]
19. Language / C. Assigning Meanings / 2. Semantics
Semantics as theory of meaning and semantics as truth-based logical consequence are very different [Soames]
19. Language / C. Assigning Meanings / 6. Truth-Conditions Semantics
Semantic content is a proposition made of sentence constituents (not some set of circumstances) [Soames]
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Two-dimensionalism reinstates descriptivism, and reconnects necessity and apriority to analyticity [Soames]
19. Language / D. Propositions / 4. Mental Propositions
We should use cognitive states to explain representational propositions, not vice versa [Soames]
22. Metaethics / B. Value / 1. Nature of Value / e. Means and ends
All moral judgements ultimately concern the value of ends [Rashdall]
23. Ethics / E. Utilitarianism / 6. Ideal Utilitarianism
Ideal Utilitarianism is teleological but non-hedonistic; the aim is an ideal end, which includes pleasure [Rashdall]
28. God / B. Proving God / 2. Proofs of Reason / c. Moral Argument
Conduct is only reasonable or unreasonable if the world is governed by reason [Rashdall]
Absolute moral ideals can't exist in human minds or material things, so their acceptance implies a greater Mind [Rashdall, by PG]