Combining Philosophers

All the ideas for Hermarchus, Graham Priest and Laura Schroeter

expand these ideas     |    start again     |     specify just one area for these philosophers


57 ideas

2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
<a,b&62; is a set whose members occur in the order shown [Priest,G]
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
Φ indicates the empty set, which has no members [Priest,G]
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
X⊆Y means set X is a 'subset' of set Y [Priest,G]
X = Y means the set X equals the set Y [Priest,G]
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
A 'set' is a collection of objects [Priest,G]
The 'empty set' or 'null set' has no members [Priest,G]
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
A 'proper subset' is smaller than the containing set [Priest,G]
A 'singleton' is a set with only one member [Priest,G]
A 'member' of a set is one of the objects in the set [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
5. Theory of Logic / L. Paradox / 1. Paradox
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / b. König's paradox
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / d. Richard's paradox
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
10. Modality / A. Necessity / 3. Types of Necessity
Superficial necessity is true in all worlds; deep necessity is thus true, no matter which world is actual [Schroeter]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / b. Conceivable but impossible
Contradictory claims about a necessary god both seem apriori coherent [Schroeter]
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
2D semantics gives us apriori knowledge of our own meanings [Schroeter]
18. Thought / C. Content / 5. Twin Earth
Your view of water depends on whether you start from the actual Earth or its counterfactual Twin [Schroeter]
18. Thought / C. Content / 7. Narrow Content
Rationalists say knowing an expression is identifying its extension using an internal cognitive state [Schroeter]
19. Language / A. Nature of Meaning / 1. Meaning
Internalist meaning is about understanding; externalist meaning is about embedding in a situation [Schroeter]
19. Language / C. Assigning Meanings / 2. Semantics
Semantic theory assigns meanings to expressions, and metasemantics explains how this works [Schroeter]
19. Language / C. Assigning Meanings / 4. Compositionality
Semantic theories show how truth of sentences depends on rules for interpreting and joining their parts [Schroeter]
19. Language / C. Assigning Meanings / 7. Extensional Semantics
Simple semantics assigns extensions to names and to predicates [Schroeter]
'Federer' and 'best tennis player' can't mean the same, despite having the same extension [Schroeter]
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics uses 'intensions' - functions which assign extensions at each world [Schroeter]
Possible worlds make 'I' and that person's name synonymous, but they have different meanings [Schroeter]
Possible worlds semantics implies a constitutive connection between meanings and modal claims [Schroeter]
In the possible worlds account all necessary truths are same (because they all map to the True) [Schroeter]
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Array worlds along the horizontal, and contexts (world,person,time) along the vertical [Schroeter]
If we introduce 'actually' into modal talk, we need possible worlds twice to express this [Schroeter]
Do we know apriori how we refer to names and natural kinds, but their modal profiles only a posteriori? [Schroeter]
2D fans defend it for conceptual analysis, for meaning, and for internalist reference [Schroeter]
2D semantics can't respond to contingent apriori claims, since there is no single proposition involved [Schroeter]
25. Social Practice / F. Life Issues / 6. Animal Rights
Animals are dangerous and nourishing, and can't form contracts of justice [Hermarchus, by Sedley]