Combining Philosophers

All the ideas for Hermarchus, Gregory L. Murphy and Brian Clegg

expand these ideas     |    start again     |     specify just one area for these philosophers


45 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
Any set can always generate a larger set - its powerset, of subsets [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
An ordinal number is defined by the set that comes before it [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
12. Knowledge Sources / B. Perception / 5. Interpretation
Research shows perceptual discrimination is sharper at category boundaries [Murphy]
14. Science / C. Induction / 1. Induction
Induction is said to just compare properties of categories, but the type of property also matters [Murphy]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
The main theories of concepts are exemplar, prototype and knowledge [Murphy]
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The theoretical and practical definitions for the classical view are very hard to find [Murphy]
The classical definitional approach cannot distinguish typical and atypical category members [Murphy]
Classical concepts follow classical logic, but concepts in real life don't work that way [Murphy]
Classical concepts are transitive hierarchies, but actual categories may be intransitive [Murphy]
The classical core is meant to be the real concept, but actually seems unimportant [Murphy]
18. Thought / D. Concepts / 4. Structure of Concepts / d. Concepts as prototypes
There is no 'ideal' bird or dog, and prototypes give no information about variability [Murphy]
Prototypes are unified representations of the entire category (rather than of members) [Murphy]
The prototype theory uses observed features, but can't include their construction [Murphy]
The prototype theory handles hierarchical categories and combinations of concepts well [Murphy]
Prototypes theory of concepts is best, as a full description with weighted typical features [Murphy]
Learning concepts is forming prototypes with a knowledge structure [Murphy]
18. Thought / D. Concepts / 4. Structure of Concepts / e. Concepts from exemplars
The most popular theories of concepts are based on prototypes or exemplars [Murphy]
The exemplar view of concepts says 'dogs' is the set of dogs I remember [Murphy]
Exemplar theory struggles with hierarchical classification and with induction [Murphy]
Children using knowing and essentialist categories doesn't fit the exemplar view [Murphy]
Conceptual combination must be compositional, and can't be built up from exemplars [Murphy]
The concept of birds from exemplars must also be used in inductions about birds [Murphy]
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
We do not learn concepts in isolation, but as an integrated part of broader knowledge [Murphy]
Concepts with familiar contents are easier to learn [Murphy]
Some knowledge is involved in instant use of categories, other knowledge in explanations [Murphy]
People categorise things consistent with their knowledge, even rejecting some good evidence [Murphy]
25. Social Practice / F. Life Issues / 6. Animal Rights
Animals are dangerous and nourishing, and can't form contracts of justice [Hermarchus, by Sedley]