Combining Philosophers

All the ideas for Hermarchus, John Mayberry and Peter Geach

expand these ideas     |    start again     |     specify just one area for these philosophers


59 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
There is a semi-categorical axiomatisation of set-theory [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Are 'word token' and 'word type' different sorts of countable objects, or two ways of counting? [Geach, by Perry]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Abstraction from objects won't reveal an operation's being performed 'so many times' [Geach]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Attributes are functions, not objects; this distinguishes 'square of 2' from 'double of 2' [Geach]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
9. Objects / A. Existence of Objects / 6. Nihilism about Objects
We should abandon absolute identity, confining it to within some category [Geach, by Hawthorne]
9. Objects / F. Identity among Objects / 3. Relative Identity
Denial of absolute identity has drastic implications for logic, semantics and set theory [Wasserman on Geach]
Identity is relative. One must not say things are 'the same', but 'the same A as' [Geach]
9. Objects / F. Identity among Objects / 8. Leibniz's Law
Leibniz's Law is incomplete, since it includes a non-relativized identity predicate [Geach, by Wasserman]
9. Objects / F. Identity among Objects / 9. Sameness
Being 'the same' is meaningless, unless we specify 'the same X' [Geach]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
A big flea is a small animal, so 'big' and 'small' cannot be acquired by abstraction [Geach]
We cannot learn relations by abstraction, because their converse must be learned too [Geach]
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
If concepts are just recognitional, then general judgements would be impossible [Geach]
17. Mind and Body / B. Behaviourism / 2. Potential Behaviour
You can't define real mental states in terms of behaviour that never happens [Geach]
17. Mind and Body / B. Behaviourism / 4. Behaviourism Critique
Beliefs aren't tied to particular behaviours [Geach]
18. Thought / D. Concepts / 2. Origin of Concepts / a. Origin of concepts
The mind does not lift concepts from experience; it creates them, and then applies them [Geach]
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
For abstractionists, concepts are capacities to recognise recurrent features of the world [Geach]
18. Thought / D. Concepts / 5. Concepts and Language / c. Concepts without language
If someone has aphasia but can still play chess, they clearly have concepts [Geach]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
'Abstractionism' is acquiring a concept by picking out one experience amongst a group [Geach]
18. Thought / E. Abstraction / 8. Abstractionism Critique
'Or' and 'not' are not to be found in the sensible world, or even in the world of inner experience [Geach]
We can't acquire number-concepts by extracting the number from the things being counted [Geach]
Abstractionists can't explain counting, because it must precede experience of objects [Geach]
The numbers don't exist in nature, so they cannot have been abstracted from there into our languages [Geach]
Blind people can use colour words like 'red' perfectly intelligently [Geach]
If 'black' and 'cat' can be used in the absence of such objects, how can such usage be abstracted? [Geach]
We can form two different abstract concepts that apply to a single unified experience [Geach]
The abstractionist cannot explain 'some' and 'not' [Geach]
Only a judgement can distinguish 'striking' from 'being struck' [Geach]
22. Metaethics / C. The Good / 1. Goodness / a. Form of the Good
'Good' is an attributive adjective like 'large', not predicative like 'red' [Geach, by Foot]
25. Social Practice / F. Life Issues / 6. Animal Rights
Animals are dangerous and nourishing, and can't form contracts of justice [Hermarchus, by Sedley]