Combining Philosophers

All the ideas for Herodotus, Alexander Bird and David Bostock

expand these ideas     |    start again     |     specify just one area for these philosophers


220 ideas

1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
Instrumentalists say distinctions between observation and theory vanish with ostensive definition [Bird]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The plausible Barcan formula implies modality in the actual world [Bird]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
The completeness of first-order logic implies its compactness [Bostock]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
If we are to express that there at least two things, we need identity [Bostock]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
The Deduction Theorem greatly simplifies the search for proof [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
A completed open branch gives an interpretation which verifies those formulae [Bostock]
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
A sequent calculus is good for comparing proof systems [Bostock]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
The number of reals is the number of subsets of the natural numbers [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
There are many criteria for the identity of numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
If Hume's Principle is the whole story, that implies structuralism [Bostock]
Many crucial logicist definitions are in fact impredicative [Bostock]
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
Predicativism makes theories of huge cardinals impossible [Bostock]
If mathematics rests on science, predicativism may be the best approach [Bostock]
If we can only think of what we can describe, predicativism may be implied [Bostock]
The predicativity restriction makes a difference with the real numbers [Bostock]
The usual definitions of identity and of natural numbers are impredicative [Bostock]
7. Existence / A. Nature of Existence / 6. Criterion for Existence
If all existents are causally active, that excludes abstracta and causally isolated objects [Bird]
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If naturalism refers to supervenience, that leaves necessary entities untouched [Bird]
7. Existence / D. Theories of Reality / 4. Anti-realism
Anti-realism is more plausible about laws than about entities and theories [Bird]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
8. Modes of Existence / B. Properties / 3. Types of Properties
There might be just one fundamental natural property [Bird]
8. Modes of Existence / B. Properties / 6. Categorical Properties
Categorical properties are not modally fixed, but change across possible worlds [Bird]
The categoricalist idea is that a property is only individuated by being itself [Bird]
If we abstractly define a property, that doesn't mean some object could possess it [Bird]
Categoricalists take properties to be quiddities, with no essential difference between them [Bird]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
To name an abundant property is either a Fregean concept, or a simple predicate [Bird]
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
Only real powers are fundamental [Bird, by Mumford/Anjum]
8. Modes of Existence / C. Powers and Dispositions / 3. Powers as Derived
If all properties are potencies, and stimuli and manifestation characterise them, there is a regress [Bird]
The essence of a potency involves relations, e.g. mass, to impressed force and acceleration [Bird]
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / c. Dispositions as conditional
A disposition is finkish if a time delay might mean the manifestation fizzles out [Bird]
A robust pot attached to a sensitive bomb is not fragile, but if struck it will easily break [Bird]
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
Megarian actualists deny unmanifested dispositions [Bird]
8. Modes of Existence / D. Universals / 3. Instantiated Universals
Why should a universal's existence depend on instantiation in an existing particular? [Bird]
8. Modes of Existence / E. Nominalism / 2. Resemblance Nominalism
Resemblance itself needs explanation, presumably in terms of something held in common [Bird]
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
10. Modality / A. Necessity / 3. Types of Necessity
If the laws necessarily imply p, that doesn't give a new 'nomological' necessity [Bird]
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
Logical necessitation is not a kind of necessity; George Orwell not being Eric Blair is not a real possibility [Bird]
10. Modality / B. Possibility / 6. Probability
Subjective probability measures personal beliefs; objective probability measures the chance of an event happening [Bird]
Objective probability of tails measures the bias of the coin, not our beliefs about it [Bird]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
Empiricist saw imaginability and possibility as close, but now they seem remote [Bird]
10. Modality / E. Possible worlds / 3. Transworld Objects / d. Haecceitism
Haecceitism says identity is independent of qualities and without essence [Bird]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / b. Need for justification
Many philosophers rate justification as a more important concept than knowledge [Bird]
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / b. Pro-coherentism
As science investigates more phenomena, the theories it needs decreases [Bird]
14. Science / A. Basis of Science / 1. Observation
If theories need observation, and observations need theories, how do we start? [Bird]
14. Science / A. Basis of Science / 4. Prediction
Explanation predicts after the event; prediction explains before the event [Bird]
14. Science / B. Scientific Theories / 1. Scientific Theory
Relativity ousted Newtonian mechanics despite a loss of simplicity [Bird]
Realists say their theories involve truth and the existence of their phenomena [Bird]
There is no agreement on scientific method - because there is no such thing [Bird]
14. Science / B. Scientific Theories / 3. Instrumentalism
Instrumentalists regard theories as tools for prediction, with truth being irrelevant [Bird]
14. Science / C. Induction / 2. Aims of Induction
Induction is inference to the best explanation, where the explanation is a law [Bird]
14. Science / C. Induction / 3. Limits of Induction
If Hume is right about induction, there is no scientific knowledge [Bird]
Anything justifying inferences from observed to unobserved must itself do that [Bird]
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Any conclusion can be drawn from an induction, if we use grue-like predicates [Bird]
Several months of observing beech trees supports the deciduous and evergreen hypotheses [Bird]
We normally learn natural kinds from laws, but Goodman shows laws require prior natural kinds [Bird]
14. Science / C. Induction / 6. Bayes's Theorem
Bayesianism claims to find rationality and truth in induction, and show how science works [Bird]
14. Science / D. Explanation / 1. Explanation / a. Explanation
The objective component of explanations is the things that must exist for the explanation [Bird]
We talk both of 'people' explaining things, and of 'facts' explaining things [Bird]
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
We can't reject all explanations because of a regress; inexplicable A can still explain B [Bird]
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Explanations are causal, nomic, psychological, psychoanalytic, Darwinian or functional [Bird]
14. Science / D. Explanation / 2. Types of Explanation / b. Contrastive explanations
Contrastive explanations say why one thing happened but not another [Bird]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
'Covering law' explanations only work if no other explanations are to be found [Bird]
Livers always accompany hearts, but they don't explain hearts [Bird]
14. Science / D. Explanation / 2. Types of Explanation / l. Probabilistic explanations
Probabilistic-statistical explanations don't entail the explanandum, but makes it more likely [Bird]
An operation might reduce the probability of death, yet explain a death [Bird]
14. Science / D. Explanation / 3. Best Explanation / a. Best explanation
Inference to the Best Explanation is done with facts, so it has to be realist [Bird]
14. Science / D. Explanation / 3. Best Explanation / c. Against best explanation
Maybe bad explanations are the true ones, in this messy world [Bird]
Which explanation is 'best' is bound to be subjective, and no guide to truth [Bird]
14. Science / D. Explanation / 4. Explanation Doubts / a. Explanation as pragmatic
Maybe explanation is so subjective that it cannot be a part of science [Bird]
15. Nature of Minds / C. Capacities of Minds / 9. Perceiving Causation
Causation seems to be an innate concept (or acquired very early) [Bird]
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Natural kinds are those that we use in induction [Bird]
Rubies and sapphires are both corundum, with traces of metals varying their colours [Bird]
Tin is not one natural kind, but appears to be 21, depending on isotope [Bird]
Membership of a purely random collection cannot be used as an explanation [Bird]
Natural kinds may overlap, or be sub-kinds of one another [Bird]
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
If F is a universal appearing in a natural law, then Fs form a natural kind [Bird]
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
In the Kripke-Putnam view only nuclear physicists can know natural kinds [Bird]
Darwinism suggests that we should have a native ability to detect natural kinds [Bird]
26. Natural Theory / B. Natural Kinds / 5. Reference to Natural Kinds
Nominal essence of a natural kind is the features that make it fit its name [Bird]
Jadeite and nephrite are superficially identical, but have different composition [Bird]
Reference to scientific terms is by explanatory role, not by descriptions [Bird]
26. Natural Theory / C. Causation / 2. Types of cause
The dispositional account explains causation, as stimulation and manifestation of dispositions [Bird]
26. Natural Theory / C. Causation / 4. Naturalised causation
We should explain causation by powers, not powers by causation [Bird]
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
Laws are more fundamental in science than causes, and laws will explain causes [Bird]
Singularism about causes is wrong, as the universals involved imply laws [Bird]
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
The counterfactual approach makes no distinction between cause and pre-condition [Bird]
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
Newton's laws cannot be confirmed individually, but only in combinations [Bird]
Parapsychology is mere speculation, because it offers no mechanisms for its working [Bird]
Existence requires laws, as inertia or gravity are needed for mass or matter [Bird]
Laws are explanatory relationships of things, which supervene on their essences [Bird]
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Laws are either disposition regularities, or relations between properties [Bird]
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
'All uranium lumps are small' is a law, but 'all gold lumps are small' is not [Bird]
There can be remarkable uniformities in nature that are purely coincidental [Bird]
A law might have no instances, if it was about things that only exist momentarily [Bird]
If laws are just instances, the law should either have gaps, or join the instances arbitrarily [Bird]
Where is the regularity in a law predicting nuclear decay? [Bird]
Laws cannot explain instances if they are regularities, as something can't explain itself [Bird]
That other diamonds are hard does not explain why this one is [Bird]
Similar appearance of siblings is a regularity, but shared parents is what links them [Bird]
We can only infer a true regularity if something binds the instances together [Bird]
If we only infer laws from regularities among observations, we can't infer unobservable entities. [Bird]
Accidental regularities are not laws, and an apparent regularity may not be actual [Bird]
Dispositional essentialism says laws (and laws about laws) are guaranteed regularities [Bird]
There may be many laws, each with only a few instances [Bird]
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
A regularity is only a law if it is part of a complete system which is simple and strong [Bird]
With strange enough predicates, anything could be made out to be a regularity [Bird]
26. Natural Theory / D. Laws of Nature / 5. Laws from Universals
Laws cannot offer unified explanations if they don't involve universals [Bird]
If the universals for laws must be instantiated, a vanishing particular could destroy a law [Bird]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
Salt necessarily dissolves in water, because of the law which makes the existence of salt possible [Bird]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
Most laws supervene on fundamental laws, which are explained by basic powers [Bird, by Friend/Kimpton-Nye]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
If flame colour is characteristic of a metal, that is an empirical claim needing justification [Bird]
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Essentialism can't use conditionals to explain regularities, because of possible interventions [Bird]
27. Natural Reality / B. Modern Physics / 4. Standard Model / d. Mass
In Newton mass is conserved, but in Einstein it can convert into energy [Bird]
27. Natural Reality / D. Time / 1. Nature of Time / b. Relative time
The relational view of space-time doesn't cover times and places where things could be [Bird]
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]