Combining Philosophers

All the ideas for Herodotus, Keith Devlin and Alan Musgrave

expand these ideas     |    start again     |     specify just one area for these philosophers


22 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Logic was merely a branch of rhetoric until the scientific 17th century [Devlin]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'No councillors are bankers' and 'All bankers are athletes' implies 'Some athletes are not councillors' [Devlin]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Modern propositional inference replaces Aristotle's 19 syllogisms with modus ponens [Devlin]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Predicate logic retains the axioms of propositional logic [Devlin]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Situation theory is logic that takes account of context [Devlin]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Golden ages: 1900-1960 for pure logic, and 1950-1985 for applied logic [Devlin]
Montague's intensional logic incorporated the notion of meaning [Devlin]
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Where a conditional is purely formal, an implication implies a link between premise and conclusion [Devlin]
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
The If-thenist view only seems to work for the axiomatised portions of mathematics [Musgrave]
Perhaps If-thenism survives in mathematics if we stick to first-order logic [Musgrave]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Sentences of apparent identical form can have different contextual meanings [Devlin]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths may contain non-logical notions, as in 'all men are men' [Musgrave]
A statement is logically true if it comes out true in all interpretations in all (non-empty) domains [Musgrave]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Space and time are atomic in the arrow, and divisible in the tortoise [Devlin]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
No two numbers having the same successor relies on the Axiom of Infinity [Musgrave]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism seems to exclude all creative, growing mathematics [Musgrave]
Formalism is a bulwark of logical positivism [Musgrave]
13. Knowledge Criteria / E. Relativism / 5. Language Relativism
People still say the Hopi have no time concepts, despite Whorf's later denial [Devlin]
19. Language / A. Nature of Meaning / 5. Meaning as Verification
Logical positivists adopted an If-thenist version of logicism about numbers [Musgrave]
19. Language / C. Assigning Meanings / 1. Syntax
How do we parse 'time flies like an arrow' and 'fruit flies like an apple'? [Devlin]
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
The distinction between sentences and abstract propositions is crucial in logic [Devlin]
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]