Combining Philosophers

All the ideas for Herodotus, Pascal Engel and Shaughan Lavine

expand these ideas     |    start again     |     specify just one area for these philosophers


50 ideas

1. Philosophy / F. Analytic Philosophy / 3. Analysis of Preconditions
In "if and only if" (iff), "if" expresses the sufficient condition, and "only if" the necessary condition [Engel]
3. Truth / A. Truth Problems / 5. Truth Bearers
Are truth-bearers propositions, or ideas/beliefs, or sentences/utterances? [Engel]
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
The redundancy theory gets rid of facts, for 'it is a fact that p' just means 'p' [Engel]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
We can't explain the corresponding structure of the world except by referring to our thoughts [Engel]
3. Truth / D. Coherence Truth / 1. Coherence Truth
The coherence theory says truth is an internal relationship between groups of truth-bearers [Engel]
3. Truth / D. Coherence Truth / 2. Coherence Truth Critique
Any coherent set of beliefs can be made more coherent by adding some false beliefs [Engel]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationism seems to block philosophers' main occupation, asking metatheoretical questions [Engel]
Deflationism cannot explain why we hold beliefs for reasons [Engel]
3. Truth / H. Deflationary Truth / 3. Minimalist Truth
Maybe there is no more to be said about 'true' than there is about the function of 'and' in logic [Engel]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Deflationism must reduce bivalence ('p is true or false') to excluded middle ('p or not-p') [Engel]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
The Humean theory of motivation is that beliefs may be motivators as well as desires [Engel]
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
Our beliefs are meant to fit the world (i.e. be true), where we want the world to fit our desires [Engel]
11. Knowledge Aims / A. Knowledge / 4. Belief / d. Cause of beliefs
'Evidentialists' say, and 'voluntarists' deny, that we only believe on the basis of evidence [Engel]
12. Knowledge Sources / D. Empiricism / 3. Pragmatism
Pragmatism is better understood as a theory of belief than as a theory of truth [Engel]
13. Knowledge Criteria / C. External Justification / 5. Controlling Beliefs
We cannot directly control our beliefs, but we can control the causes of our involuntary beliefs [Engel]
17. Mind and Body / C. Functionalism / 1. Functionalism
Mental states as functions are second-order properties, realised by first-order physical properties [Engel]
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]