Combining Philosophers

All the ideas for Herodotus, Shaughan Lavine and Mark Rowlands

expand these ideas     |    start again     |     specify just one area for these philosophers


50 ideas

1. Philosophy / H. Continental Philosophy / 4. Linguistic Structuralism
Structuralism is neo-Kantian idealism, with language playing the role of categories of understanding [Rowlands]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
If bivalence is rejected, then excluded middle must also be rejected [Rowlands]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
7. Existence / C. Structure of Existence / 5. Supervenience / a. Nature of supervenience
Supervenience is a one-way relation of dependence or determination between properties [Rowlands]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
It is argued that wholes possess modal and counterfactual properties that parts lack [Rowlands]
9. Objects / F. Identity among Objects / 4. Type Identity
Tokens are dated, concrete particulars; types are their general properties or kinds [Rowlands]
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / a. Idealism
Strong idealism is the sort of mess produced by a Cartesian separation of mind and world [Rowlands]
15. Nature of Minds / A. Nature of Mind / 1. Mind / c. Features of mind
Minds are rational, conscious, subjective, self-knowing, free, meaningful and self-aware [Rowlands]
15. Nature of Minds / A. Nature of Mind / 6. Anti-Individualism
Content externalism implies that we do not have privileged access to our own minds [Rowlands]
If someone is secretly transported to Twin Earth, others know their thoughts better than they do [Rowlands]
17. Mind and Body / D. Property Dualism / 5. Supervenience of mind
Supervenience of mental and physical properties often comes with token-identity of mental and physical particulars [Rowlands]
18. Thought / C. Content / 1. Content
The content of a thought is just the meaning of a sentence [Rowlands]
20. Action / A. Definition of Action / 4. Action as Movement
Action is bodily movement caused by intentional states [Rowlands]
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / c. Ethical intuitionism
Moral intuition seems unevenly distributed between people [Rowlands]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / g. Atomism
The 17th century reintroduced atoms as mathematical modes of Euclidean space [Rowlands]
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
Natural kinds are defined by their real essence, as in gold having atomic number 79 [Rowlands]
27. Natural Reality / G. Biology / 4. Ecology
It is common to see the value of nature in one feature, such as life, diversity, or integrity [Rowlands]
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]