Combining Philosophers

All the ideas for Hippolytus, Curt Ducasse and Leslie H. Tharp

expand these ideas     |    start again     |     specify just one area for these philosophers


24 ideas

2. Reason / D. Definition / 2. Aims of Definition
A correct definition is what can be substituted without loss of meaning [Ducasse]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
26. Natural Theory / C. Causation / 2. Types of cause
Causation is defined in terms of a single sequence, and constant conjunction is no part of it [Ducasse]
26. Natural Theory / C. Causation / 8. Particular Causation / a. Observation of causation
We see what is in common between causes to assign names to them, not to perceive them [Ducasse]
26. Natural Theory / C. Causation / 8. Particular Causation / c. Conditions of causation
Causes are either sufficient, or necessary, or necessitated, or contingent upon [Ducasse]
When a brick and a canary-song hit a window, we ignore the canary if we are interested in the breakage [Ducasse]
26. Natural Theory / C. Causation / 8. Particular Causation / d. Selecting the cause
A cause is a change which occurs close to the effect and just before it [Ducasse]
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
Recurrence is only relevant to the meaning of law, not to the meaning of cause [Ducasse]
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
We are interested in generalising about causes and effects purely for practical purposes [Ducasse]